Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Hum Brain Mapp ; 44(4): 1445-1455, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36399515

RESUMO

Individual differences in the ability to process language have long been discussed. Much of the neural basis of these, however, is yet unknown. Here we investigated the relationship between long-range white matter connectivity of the brain, as revealed by diffusion tractography, and the ability to process syntactically complex sentences in the participants' native language as well as the improvement thereof by multiday training. We identified specific network motifs by singular value decomposition that indeed related white matter structural connectivity to individual language processing performance. First, for two such motifs, one in the left and one in the right hemisphere, their individual prevalence significantly predicted the individual language performance, suggesting an anatomical predisposition for the individual ability to process syntactically complex sentences. Both motifs comprise a number of cortical regions, but seem to be dominated by areas known for the involvement in working memory rather than the classical language network itself. Second, we identified another left hemispheric network motif, whose change of prevalence over the training period significantly correlated with the individual change in performance, thus reflecting training induced white matter plasticity. This motif comprises diverse cortical areas including regions known for their involvement in language processing, working memory and motor functions. The present findings suggest that individual differences in language processing and learning can be explained, in part, by individual differences in the brain's white matter structure. Brain structure may be a crucial factor to be considered when discussing variations in human cognitive performance, more generally.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizagem , Idioma , Imagem de Tensor de Difusão
2.
Hum Brain Mapp ; 42(12): 3858-3870, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33942956

RESUMO

The adult human brain remains plastic even after puberty. However, whether first language (L1) training in adults can alter the language network is yet largely unknown. Thus, we conducted a longitudinal training experiment on syntactically complex German sentence comprehension. Sentence complexity was varied by the depth of the center embedded relative clauses (i.e., single or double embedded). Comprehension was tested after each sentence with a question on the thematic role assignment. Thirty adult, native German speakers were recruited for 4 days of training. Magnetoencephalography (MEG) data were recorded and subjected to spectral power analysis covering the classical frequency bands (i.e., theta, alpha, beta, low gamma, and gamma). Normalized spectral power, time-locked to the final closure of the relative clause, was subjected to a two-factor analysis ("sentence complexity" and "training days"). Results showed that for the more complex sentences, the interaction of sentence complexity and training days was observed in Brodmann area 44 (BA 44) as a decrease of gamma power with training. Moreover, in the gamma band (55-95 Hz) functional connectivity between BA 44 and other brain regions such as the inferior frontal sulcus and the inferior parietal cortex were correlated with behavioral performance increase due to training. These results show that even for native speakers, complex L1 sentence training improves language performance and alters neural activities of the left hemispheric language network. Training strengthens the use of the dorsal processing stream with working-memory-related brain regions for syntactically complex sentences, thereby demonstrating the brain's functional plasticity for L1 training.


Assuntos
Córtex Cerebral/fisiologia , Lateralidade Funcional/fisiologia , Ritmo Gama/fisiologia , Magnetoencefalografia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Prática Psicológica , Psicolinguística , Adulto , Área de Broca/fisiologia , Compreensão/fisiologia , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
3.
Brain Struct Funct ; 225(2): 607-619, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072249

RESUMO

Word learning plays a central role in language development and is a key predictor for later academic success. The underlying neural basis of successful word learning in children is still unknown. Here, we took advantage of the opportunity afforded by diffusion-weighted magnetic resonance imaging to investigate neural plasticity in the white matter of typically developing preschool children as they learn words. We demonstrate that after 3 weeks of word learning, children showed significantly larger increases of fractional anisotropy (FA) in the left precentral white matter compared to two control groups. Average training accuracy was correlated with FA change in the white matter underlying the left dorsal postcentral gyrus, with children who learned more slowly showing larger FA increases in this region. Moreover, we found that the status of white matter in the left middle temporal gyrus, assumed to support semantic processes, is predictive for early stages of word learning. Our findings provide the first evidence for white matter plasticity following word learning in preschool children. The present results on learning novel words in children point to a key involvement of the left fronto-parietal fiber connection, known to be implicated in top-down attention as well as working memory. While working memory and attention have been discussed to participate in word learning in children, our training study provides evidence that the neural structure supporting these cognitive processes plays a direct role in word learning.


Assuntos
Encéfalo/fisiologia , Desenvolvimento da Linguagem , Aprendizagem/fisiologia , Plasticidade Neuronal , Leitura , Substância Branca/fisiologia , Encéfalo/anatomia & histologia , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Substância Branca/anatomia & histologia
4.
Neuroimage ; 211: 116633, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061802

RESUMO

Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Conectoma , Dislexia/fisiopatologia , Idioma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Percepção da Fala/fisiologia , Criança , Pré-Escolar , Suscetibilidade a Doenças/diagnóstico por imagem , Suscetibilidade a Doenças/fisiopatologia , Dislexia/diagnóstico por imagem , Feminino , Humanos , Individualidade , Alfabetização , Estudos Longitudinais , Masculino , Rede Nervosa/diagnóstico por imagem
5.
Neuroimage ; 191: 36-48, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738206

RESUMO

Language skills increase as the brain matures. Language processing, especially the comprehension of syntactically complex sentences, is supported by a brain network involving functional interactions between left inferior frontal and left temporal regions in the adult brain, with reduced functional interactions in children. Here, we examined the gray matter covariance of the cortical thickness network relevant for syntactic processing in relation to language abilities in preschool children (i.e., 5-year-olds) and analyzed the developmental changes of the cortical thickness covariance cross-sectionally by comparing preschool children, school age children, and adults. Further, to demonstrate the agreement of cortical thickness covariance and white matter connectivity, tractography analyses were performed. Covariance of language-relevant seeds in preschoolers was strongest in contralateral homologous regions. A more adult-like, significant cortical thickness covariance between left frontal and left temporal regions, however, was observed in preschoolers with advanced syntactic language abilities. By comparing the three age groups, we could show that the cortical thickness covariance pattern from the language-associated seeds develops progressively from restricted in preschoolers to widely-distributed brain regions in adults. In addition, our results suggest that the cortical thickness covariance difference of the left inferior frontal gyrus to superior temporal gyrus/sulcus between preschoolers and adults is accompanied by distinctions in the white matter tracts linking these two areas, with more mature white matter in the arcuate fasciculus in adults compared to preschoolers. These findings provide anatomical evidence for developmental changes in language both from the perspective of gray matter structure co-variation within the language network and white matter maturity as the anatomical substrate for the structural covariance.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento da Linguagem , Vias Neurais/crescimento & desenvolvimento , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
6.
Brain Cogn ; 134: 110-121, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30442450

RESUMO

Sentence comprehension requires the assignment of thematic relations between the verb and its noun arguments in order to determine who is doing what to whom. In some languages, such as English, word order is the primary syntactic cue. In other languages, such as German, case-marking is additionally used to assign thematic roles. During development children have to acquire the thematic relevance of these syntactic cues and weigh them against semantic cues. Here we investigated the processing of syntactic cues and semantic cues in 2- and 3-year-old children by analyzing their behavioral and neurophysiological responses. Case-marked subject-first and object-first sentences (syntactic cue) including animate and inanimate nouns (semantic cue) were presented auditorily. The semantic animacy cue either conflicted with or supported the thematic roles assigned by syntactic case-marking. In contrast to adults, for whom semantics did not interfere with case-marking, children attended to both syntactic and to semantic cues with a stronger reliance on semantic cues in early development. Children's event-related brain potentials indicated sensitivity to syntactic information but increased processing costs when case-marking and animacy assigned conflicting thematic roles. These results demonstrate an early developmental sensitivity and ongoing shift towards the use of syntactic cues during sentence comprehension.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Potenciais Evocados/fisiologia , Idioma , Pré-Escolar , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Semântica , Percepção da Fala/fisiologia
7.
Cereb Cortex ; 29(2): 827-837, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462166

RESUMO

The human brain undergoes dramatic structural changes during childhood that co-occur with behavioral development. These age-related changes are documented for the brain's gray matter and white matter. However, their interrelation is largely unknown. In this study, we investigated age-related effects in cortical thickness (CT) and in cortical surface area (SA) as parts of the gray matter volume as well as age effects in T1 relaxation times in the white matter. Data from N = 170 children between the ages of 3 and 7 years contributed to the sample. We found a high spatial overlap of age-related correlations between SA and T1 relaxation times of the corresponding white matter connections, but no such relation between SA and CT. These results indicate that during childhood the developmental expansion of the cortical surface goes hand-in-hand with age-related increase of white matter fiber connections terminating in the cortical surface.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Fibras Nervosas Mielinizadas/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
9.
Brain Behav ; 7(11): e00851, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29201552

RESUMO

Background: Dyslexia is a specific learning disorder affecting reading and spelling abilities. Its prevalence is ~5% in German-speaking individuals. Although the etiology of dyslexia largely remains to be determined, comprehensive evidence supports deficient phonological processing as a major contributing factor. An important prerequisite for phonological processing is auditory discrimination and, thus, essential for acquiring reading and spelling skills. The event-related potential Mismatch Response (MMR) is an indicator for auditory discrimination capabilities with dyslexics showing an altered late component of MMR in response to auditory input. Methods: In this study, we comprehensively analyzed associations of dyslexia-specific late MMRs with genetic variants previously reported to be associated with dyslexia-related phenotypes in multiple studies comprising 25 independent single-nucleotide polymorphisms (SNPs) within 10 genes. Results: First, we demonstrated validity of these SNPs for dyslexia in our sample by showing that additional inclusion of a polygenic risk score improved prediction of impaired writing compared with a model that used MMR alone. Secondly, a multifactorial regression analysis was conducted to uncover the subset of the 25 SNPs that is associated with the dyslexia-specific late component of MMR. In total, four independent SNPs within DYX1C1 and ATP2C2 were found to be associated with MMR stronger than expected from multiple testing. To explore potential pathomechanisms, we annotated these variants with functional data including tissue-specific expression analysis and eQTLs. Conclusion: Our findings corroborate the late component of MMR as a potential endophenotype for dyslexia and support tripartite relationships between dyslexia-related SNPs, the late component of MMR and dyslexia.


Assuntos
Afasia/genética , ATPases Transportadoras de Cálcio/genética , Dislexia/genética , Potenciais Evocados Auditivos/genética , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fonética , Criança , Proteínas do Citoesqueleto , Endofenótipos , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estatística como Assunto
10.
Opt Express ; 25(13): 15504-15525, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788974

RESUMO

We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

11.
Dev Cogn Neurosci ; 24: 63-71, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28182973

RESUMO

Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.


Assuntos
Dislexia/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Psicometria/métodos , Percepção da Fala/genética , Criança , Pré-Escolar , Dislexia/fisiopatologia , Feminino , Humanos , Masculino , Risco
12.
Neuropsychologia ; 98: 24-33, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27542319

RESUMO

The organization of the language network undergoes continuous changes during development as children learn to understand sentences. In the present study, functional magnetic resonance imaging and behavioral measures were utilized to investigate functional activation and functional connectivity (FC) in three-year-old (3yo) and six-year-old (6yo) children during sentence comprehension. Transitive German sentences varying the word order (subject-initial and object-initial) with case marking were presented auditorily. We selected children who were capable of processing the subject-initial sentences above chance level accuracy from each age group to ensure that we were tapping real comprehension. Both age groups showed a main effect of word order in the left posterior superior temporal gyrus (pSTG), with greater activation for object-initial compared to subject-initial sentences. However, age differences were observed in the FC between left pSTG and the left inferior frontal gyrus (IFG). The 6yo group showed stronger FC between the left pSTG and Brodmann area (BA) 44 of the left IFG compared to the 3yo group. For the 3yo group, in turn, the FC between left pSTG and left BA 45 was stronger than with left BA 44. Our study demonstrates that while task-related activation was comparable, the small behavioral differences between age groups were reflected in the underlying functional organization revealing the ongoing development of the neural language network.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Desenvolvimento Infantil , Desenvolvimento da Linguagem , Adulto , Fatores Etários , Análise de Variância , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Adulto Jovem
13.
PLoS One ; 11(11): e0165802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812160

RESUMO

Resting state studies of spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal have shown great potential in mapping the intrinsic functional connectivity of the human brain underlying cognitive functions. The aim of the present study was to explore the developmental changes in functional networks of the developing human brain exemplified with the language network in typically developing preschool children. To this end, resting-sate fMRI data were obtained from native Chinese children at ages of 3 and 5 years, 15 in each age group. Resting-state functional connectivity (RSFC) was analyzed for four regions of interest; these are the left and right anterior superior temporal gyrus (aSTG), left posterior superior temporal gyrus (pSTG), and left inferior frontal gyrus (IFG). The comparison of these RSFC maps between 3- and 5-year-olds revealed that RSFC decreases in the right aSTG and increases in the left hemisphere between aSTG seed and IFG, between pSTG seed and IFG, as well as between IFG seed and posterior superior temporal sulcus. In a subsequent analysis, functional asymmetry of the language network seeding in aSTG, pSTG and IFG was further investigated. The results showed an increase of left lateralization in both RSFC of pSTG and of IFG from ages 3 to 5 years. The IFG showed a leftward lateralized trend in 3-year-olds, while pSTG demonstrated rightward asymmetry in 5-year-olds. These findings suggest clear developmental trajectories of the language network between 3- and 5-year-olds revealed as a function of age, characterized by increasing long-range connections and dynamic hemispheric lateralization with age. Our study provides new insights into the developmental changes of a well-established functional network in young children and also offers a basis for future cross-culture and cross-age studies of the resting-state language network.


Assuntos
Mapeamento Encefálico/métodos , Desenvolvimento da Linguagem , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Pré-Escolar , China , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem
14.
Neuroimage ; 143: 378-386, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27608602

RESUMO

BACKGROUND: Recent studies suggest that neurobiological anomalies are already detectable in pre-school children with a family history of developmental dyslexia (DD). However, there is a lack of longitudinal studies showing a direct link between those differences at a preliterate age and the subsequent literacy difficulties seen in school. It is also not clear whether the prediction of DD in pre-school children can be significantly improved when considering neurobiological predictors, compared to models based on behavioral literacy precursors only. METHODS: We recruited 53 pre-reading children either with (N=25) or without a family risk of DD (N=28). Quantitative T1 MNI data and literacy precursor abilities were assessed at kindergarten age. A subsample of 35 children was tested for literacy skills either one or two years later, that is, either in first or second grade. RESULTS: The group comparison of quantitative T1 measures revealed significantly higher T1 intensities in the left anterior arcuate fascicle (AF), suggesting reduced myelin concentration in preliterate children at risk of DD. A logistic regression showed that DD can be predicted significantly better (p=.024) when neuroanatomical differences between groups are used as predictors (80%) compared to a model based on behavioral predictors only (63%). The Wald statistic confirmed that the T1 intensity of the left AF is a statistically significant predictor of DD (p<.05). CONCLUSIONS: Our longitudinal results provide evidence for the hypothesis that neuroanatomical anomalies in children with a family risk of DD are related to subsequent problems in acquiring literacy. Particularly, solid white matter organization in the left anterior arcuate fascicle seems to play a pivotal role.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Dislexia/diagnóstico , Substância Cinzenta/diagnóstico por imagem , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem , Criança , Pré-Escolar , Dislexia/diagnóstico por imagem , Dislexia/fisiopatologia , Diagnóstico Precoce , Imagem Ecoplanar/métodos , Feminino , Seguimentos , Humanos , Masculino , Prognóstico
15.
Brain ; 139(Pt 10): 2792-2803, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27343255

RESUMO

Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the 'visual word form area' achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.

16.
Cereb Cortex ; 26(8): 3544-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230216

RESUMO

Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing.


Assuntos
Encéfalo/fisiologia , Comportamento Materno , Relações Mãe-Filho , Tato , Afeto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Jogos e Brinquedos , Descanso , Comportamento Social , Teoria da Mente
17.
Hum Genet ; 135(3): 259-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26839113

RESUMO

Reliable risk assessment of frequent, but treatable diseases and disorders has considerable clinical and socio-economic relevance. However, as these conditions usually originate from a complex interplay between genetic and environmental factors, precise prediction remains a considerable challenge. The current progress in genotyping technology has resulted in a substantial increase of knowledge regarding the genetic basis of such diseases and disorders. Consequently, common genetic risk variants are increasingly being included in epidemiological models to improve risk prediction. This work reviews recent high-quality publications targeting the prediction of common complex diseases. To be included in this review, articles had to report both, numerical measures of prediction performance based on traditional (non-genetic) risk factors, as well as measures of prediction performance when adding common genetic variants to the model. Systematic PubMed-based search finally identified 55 eligible studies. These studies were compared with respect to the chosen approach and methodology as well as results and clinical impact. Phenotypes analysed included tumours, diabetes mellitus, and cardiovascular diseases. All studies applied one or more statistical measures reporting on calibration, discrimination, or reclassification to quantify the benefit of including SNPs, but differed substantially regarding the methodological details that were reported. Several examples for improved risk assessments by considering disease-related SNPs were identified. Although the add-on benefit of including SNP genotyping data was mostly moderate, the strategy can be of clinical relevance and may, when being paralleled by an even deeper understanding of disease-related genetics, further explain the development of enhanced predictive and diagnostic strategies for complex diseases.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Marcadores Genéticos , Neoplasias/genética , Doenças Cardiovasculares/diagnóstico , Diabetes Mellitus/diagnóstico , Técnicas de Genotipagem , Humanos , Neoplasias/diagnóstico , Polimorfismo de Nucleotídeo Único , Medição de Risco
18.
Neuroimage ; 126: 256-66, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497266

RESUMO

Sentence comprehension requires the integration of both syntactic and semantic information, the acquisition of which seems to have different trajectories in the developing brain. Using functional magnetic resonance imaging, we examined the neural correlates underlying syntactic and semantic processing during auditory sentence comprehension as well as its development in preschool children by manipulating case marking and animacy hierarchy cues, respectively. A functional segregation was observed within Broca's area in the left inferior frontal gyrus for adults, where the pars opercularis was involved in syntactic processing and the pars triangularis in semantic processing. By contrast, five-year-old children sensitive to animacy hierarchy cues showed diffuse activation for semantic processing in the left inferior frontal and posterior temporal cortices. While no main effect of case marking was found in the left fronto-temporal language network, children with better syntactic skills showed greater neural responses for syntactically complex sentences, most prominently in the posterior superior temporal cortex. The current study provides both behavioral and neural evidence that five-year-old children compared to adults rely more on semantic information than on syntactic cues during sentence comprehension, but with the development of syntactic abilities, their brain activation in the left fronto-temporal network increases for syntactic processing.


Assuntos
Área de Broca/fisiologia , Compreensão/fisiologia , Neuroimagem Funcional/métodos , Desenvolvimento da Linguagem , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Pré-Escolar , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Semântica , Adulto Jovem
19.
Neuropsychologia ; 83: 274-282, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26352468

RESUMO

The development of language comprehension abilities in childhood is closely related to the maturation of the brain, especially the ability to process syntactically complex sentences. Recent studies proposed that the fronto-temporal connection within left perisylvian regions, supporting the processing of syntactically complex sentences, is still immature at preschool age. In the current study, resting state functional magnetic resonance imaging data were acquired from typically developing 5-year-old children and adults to shed further light on the brain functional development. Children additionally performed a behavioral syntactic comprehension test outside the scanner. The amplitude of low-frequency fluctuations was analyzed in order to identify the functional correlation networks of language-relevant brain regions. Results showed an intrahemispheric correlation between left inferior frontal gyrus (IFG) and left posterior superior temporal sulcus (pSTS) in adults, whereas an interhemispheric correlation between left IFG and its right-hemispheric homolog was predominant in children. Correlation analysis between resting-state functional connectivity and sentence processing performance in 5-year-olds revealed that local connectivity within the left IFG is associated with competence of processing syntactically simple canonical sentences, while long-range connectivity between IFG and pSTS in left hemisphere is associated with competence of processing syntactically relatively more complex non-canonical sentences. The present developmental data suggest that a selective left fronto-temporal connectivity network for processing complex syntax is already in functional connection at the age of 5 years when measured in a non-task situation. The correlational findings provide new insight into the relationship between intrinsic functional connectivity and syntactic language abilities in preschool children.


Assuntos
Mapeamento Encefálico , Compreensão/fisiologia , Lobo Frontal/fisiologia , Idioma , Semântica , Lobo Temporal/fisiologia , Adulto , Aprendizagem por Associação , Criança , Pré-Escolar , Feminino , Lobo Frontal/irrigação sanguínea , Lateralidade Funcional , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Rede Nervosa/irrigação sanguínea , Rede Nervosa/fisiologia , Oxigênio/sangue , Estatística como Assunto , Lobo Temporal/irrigação sanguínea , Adulto Jovem
20.
Neuroimage ; 128: 116-124, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690809

RESUMO

Resting-state functional magnetic resonance imaging is a powerful technique to study the whole-brain neural connectivity that underlies cognitive systems. The present study aimed to define the changes in neural connectivity in their relation to language development. Longitudinal resting-state functional data were acquired from a cohort of preschool children at age 5 and one year later, and changes in functional connectivity were correlated with language performance in sentence comprehension. For this, degree centrality, a voxel-based network measure, was used to assess age-related differences in connectivity at the whole-brain level. Increases in connectivity with age were found selectively in a cluster within the left posterior superior temporal gyrus and sulcus (STG/STS). In order to further specify the connection changes, a secondary seed-based functional connectivity analysis on this very cluster was performed. The correlations between resting-state functional connectivity (RSFC) and language performance revealed developmental effects with age and, importantly, also dependent on the advancement in sentence comprehension ability over time. In children with greater advancement in language abilities, the behavioral improvement was positively correlated with RSFC increase between left posterior STG/STS and other regions of the language network, i.e., left and right inferior frontal cortex. The age-related changes observed in this study provide evidence for alterations in the language network as language develops and demonstrates the viability of this approach for the investigation of normal and aberrant language development.


Assuntos
Encéfalo/fisiologia , Desenvolvimento da Linguagem , Vias Neurais/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...