Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2614, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487793

RESUMO

Countries with a high incidence of helminth infections are characterized by high morbidity and mortality to infections with intracellular pathogens such as Salmonella. Some patients with Salmonella-Schistosoma co-infections develop a so-called "chronic septicemic salmonellosis," with prolonged fever and enlargement of the liver and spleen. These effects are most likely due to the overall immunoregulatory activities of schistosomes such as induction of Tregs, Bregs, alternatively activated macrophages, and degradation of antibodies. However, detailed underlying mechanisms are not very well investigated. Here, we show that intraperitoneal application of live Schistosoma mansoni eggs prior to infection with Salmonella Typhimurium in mice leads to an impairment of IFN-γ and IL-17 responses together with a higher bacterial load compared to Salmonella infection alone. S. mansoni eggs were found in granulomas in the visceral peritoneum attached to the colon. Immunohistological staining revealed IPSE/alpha-1, a glycoprotein secreted from live schistosome eggs, and recruited basophils around the eggs. Noteworthy, IPSE/alpha-1 is known to trigger IL-4 and IL-13 release from basophils which in turn is known to suppress Th1/Th17 responses. Therefore, our data support a mechanism of how schistosomes impair a protective immune response against Salmonella infection and increase our understanding of helminth-bacterial co-infections.


Assuntos
Basófilos/imunologia , Proteínas do Ovo/metabolismo , Granuloma/patologia , Proteínas de Helminto/metabolismo , Peritônio/patologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Carga Bacteriana , Células Cultivadas , Coinfecção , Citocinas/metabolismo , Ovos , Humanos , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL
2.
Am J Physiol Gastrointest Liver Physiol ; 310(2): G55-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564721

RESUMO

Using an ex vivo perfused rat small intestinal model, we examined pathological changes to the tissue, inflammation induction, as well as dynamic changes to smooth muscle activity, metabolic competence, and luminal fluid accumulation during short-term infection with the enteropathogenic bacteria Salmonella enterica serovar Typhimurium and Yersinia enterocolitica. Although few effects were seen upon Yersinia infection, this system accurately modeled key aspects associated with Salmonella enteritis. Our results confirmed the importance of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type 3 secretion system (T3SS) in pathology, tissue invasion, inflammation induction, and fluid secretion. Novel physiological consequences of Salmonella infection of the small intestine were also identified, namely, SPI-1-dependent vasoconstriction and SPI-1-independent reduction in the digestive and absorptive functions of the epithelium. Importantly, this is the first small animal model that allows for the study of Salmonella-induced fluid secretion. Another major advantage of this model is that one can specifically determine the contribution of resident cell populations. Accordingly, we can conclude that recruited cell populations were not involved in the pathological damage, inflammation induction, fluid accumulation, nutrient absorption deficiency, and vasoconstriction observed. Although fluid loss induced by Salmonella infection is hypothesized to be due to damage caused by recruited neutrophils, our data suggest that bacterial invasion and inflammation induction in resident cell populations are sufficient for fluid loss into the lumen. In summary, this model is a novel and useful tool that allows for detailed examination of the early physiopathological effects of Salmonella infection on the small intestine.


Assuntos
Enterite/patologia , Intestino Delgado/patologia , Salmonelose Animal/patologia , Salmonella enterica , Animais , Modelos Animais de Doenças , Enterite/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Inflamação/microbiologia , Inflamação/patologia , Intestino Delgado/microbiologia , Ratos , Ratos Wistar , Salmonelose Animal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...