Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1250258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876933

RESUMO

Introduction: Tumor-associated macrophages (TAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype and function of these cells. The present study aims to characterize macrophages in high-grade serous ovarian cancer (HGSOC). Methods: Phenotype and expression of co-regulatory markers were assessed on TAMs derived from malignant ascites (MA) or peripheral blood (PB) by multiparametric flow cytometry. Samples were obtained from HGSOC patients (n=29) and healthy donors (HDs, n=16). Additional expression analysis was performed by RNAseq (n=192). Correlation with clinically relevant parameters was conducted and validated by a second patient cohort (n=517). Finally, the role of TIGIT in repolarization and phagocytosis was investigated in vitro. Results: Expression of the M2-associated receptors CD163, CD204, and CD206, as well as of the co-regulatory receptors TIGIT, CD226, TIM-3, and LAG-3 was significantly more frequent on macrophages in HGSOC than in HDs. CD39 and CD73 were broadly expressed on (mainly M2) macrophages, but without a clear clustering in HGSOC. CD163 mRNA levels were higher in TAMs from patients with residual tumor mass after surgery and associated with a shorter overall survival. In addition, TIGIT expression was associated with a higher tumor grading, indicating a prognostic relevance of M2 infiltration in HGSOC. TIGIT blockade significantly reduced the frequency of M2 macrophages. Moreover, combined blockade of TIGIT and CD47 significantly increased phagocytosis of ovarian cancer cells by TAMs in comparison to a single blockade of CD47. Conclusion: Combined blockade of TIGIT and CD47 represents a promising approach to enhance anti-CD47-facilitated phagocytosis.


Assuntos
Antígeno CD47 , Neoplasias Ovarianas , Humanos , Feminino , Antígeno CD47/genética , Antígeno CD47/metabolismo , Macrófagos Associados a Tumor/metabolismo , Fagocitose , Neoplasias Ovarianas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511518

RESUMO

The search for new and effective treatment targets for cancer immunotherapy is an ongoing challenge. Alongside the more established inhibitory immune checkpoints, a novel potential target is CD73. As one of the key enzymes in the purinergic signalling pathway CD73 is responsible for the generation of immune suppressive adenosine. The expression of CD73 is higher in tumours than in the corresponding healthy tissues and associated with a poor prognosis. CD73, mainly by the production of adenosine, is critical in the suppression of an adequate anti-tumour immune response, but also in promoting cancer cell proliferation, tumour growth, angiogenesis, and metastasis. The upregulation of CD73 and generation of adenosine by tumour or tumour-associated immune cells is a common resistance mechanism to many cancer treatments such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Therefore, the inhibition of CD73 represents a new and promising approach to increase therapy efficacy. Several CD73 inhibitors have already been developed and successfully demonstrated anti-cancer activity in preclinical studies. Currently, clinical studies evaluate CD73 inhibitors in different therapy combinations and tumour entities. The initial results suggest that inhibiting CD73 could be an effective option to augment anti-cancer immunotherapeutic strategies. This review provides an overview of the rationale behind the CD73 inhibition in different treatment combinations and the role of CD73 as a prognostic marker.


Assuntos
Relevância Clínica , Neoplasias , Humanos , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Terapia de Imunossupressão , Imunoterapia/métodos , Neoplasias/patologia
3.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36549780

RESUMO

BACKGROUND: Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS: The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2α isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS: In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT+ M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION: Our findings suggest that immunosuppressive TIGIT+ M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future.


Assuntos
Leucemia Mieloide Aguda , Macrófagos , Animais , Camundongos , Fagocitose , Receptores Imunológicos/metabolismo , Fenótipo , Citocinas/metabolismo , Microambiente Tumoral
4.
Leuk Lymphoma ; 63(11): 2645-2651, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35787724

RESUMO

Recently new treatments for acute myeloid leukemia (AML) emerged, including regimens like CPX-351 and cladribine with cytarabine and daunorubicin (DA + C), demonstrating improved survival in patient subsets. This retrospective analysis is comparing the outcome of 124 patients treated with cytarabine and daunorubicin (DA; n = 54), CPX-351 (n = 26) and DA + C (n = 44). Complete response rate following one cycle of therapy was increased in DA + C (62%) compared to CPX-351 (42%) and DA (50%). CPX-351 demonstrated a significant increased survival post allogenic stem cell transplantation against DA (hazard ratio (HR): 4.9; 95% confidence interval (95%CI): 1.1-21, p = 0.03). Median survival was reached for DA (5.6 years) but not for DA + C or CPX-351. Subgroup analysis showed that AML with myelodysplasia-related changes and therapy-related AML treated with CPX-351 had increased survival compared to DA (HR: 5.2; 95%CI: 1.2-22; p = 0.03). Our findings point twoards a CPX-351 superiority. However, the use of DA + C should be further evaluated in comparative studies.


Assuntos
Cladribina , Leucemia Mieloide Aguda , Humanos , Cladribina/efeitos adversos , Quimioterapia de Indução , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina , Daunorrubicina/efeitos adversos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/induzido quimicamente
5.
Front Immunol ; 13: 886646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734162

RESUMO

Thymocyte selection-associated high mobility group box (TOX) has been described to be a key regulator in the formation of CD8+ T cell exhaustion. Hepatitis C virus (HCV) infection with different lengths of antigen exposure in acute, chronic, and after resolution of HCV infection is the ideal immunological model to study the expression of TOX in HCV-specific CD8+ T cells with different exposure to antigen. HCV-specific CD8+ T cells from 35 HLA-A*01:01, HLA-A*02:01, and HLA-A*24:02 positive patients were analyzed with a 16-color FACS-panel evaluating the surface expression of lineage markers (CD3, CD8), ectoenzymes (CD39, CD73), markers of differentiation (CD45RO, CCR7, CD127), and markers of exhaustion and activation (TIGIT, PD-1, KLRG1, CD226) and transcription factors (TOX, Eomesodermin, T-bet). Here, we defined on-target T cells as T cells against epitopes without escape mutations and off-target T cells as those against a "historical" antigen mutated in the autologous sequence. TOX+HCV-specific CD8+ T cells from patients with chronic HCV and on-target T cells displayed co-expression of Eomesodermin and were associated with the formation of terminally exhausted CD127-PD1hi, CD39hi, CD73low CD8+ T cells. In contrast, TOX+HCV-specific CD8+ T cells in patients with off-target T cells represented a progenitor memory Tex phenotype characterized by CD127hi expression and a CD39low and CD73hi phenotype. TOX+HCV-specified CD8+ T cells in patients with a sustained virologic response were characterized by a memory phenotype (CD127+, CD73hi) and co-expression of immune checkpoints and Eomesodermin, indicating a key structure in priming of HCV-specific CD8+ T cells in the chronic stage, which persisted as a residual after therapy. Overall, the occurrence of TOX+HCV-specific CD8+ T cells was revealed at each disease stage, which impacted the development of progenitor Tex, intermediate Tex, and terminally exhausted T cell through an individual molecular footprint. In sum, TOX is induced early during acute infection but is modulated by changes in viral sequence and antigen recognition. In the case of antigen persistence, the interaction with Eomesodermin leads to the formation of terminally exhausted virus-specific CD8+ T cells, and there was a direct correlation of the co-expression of TOX and Eomes and terminally exhausted phenotype of virus-specific CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Hepatite C , Proteínas de Grupo de Alta Mobilidade , Proteínas com Domínio T , Antígenos HLA-A/metabolismo , Hepacivirus , Hepatite C/imunologia , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Ativação Linfocitária , Proteínas com Domínio T/genética
6.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326415

RESUMO

Phenotypic characterization of γδ T cells in the MALs (malignant ascites lymphocytes), TILs (tumor infiltrating lymphocytes), and PBLs (peripheral blood lymphocytes) of ovarian cancer (OvCA) patients is lacking. Therefore, we quantified γδ T cell prevalence in MAL, TIL, and PBL specimens from n = 18 OvCA patients and PBL from age-matched healthy donors (HD, n = 14). Multicolor flow cytometry was performed to evaluate the expression of inhibitory receptors (TIGIT, PD-1 and TIM-3), stimulatory receptors (Ox40), and purinergic ectoenzymes (CD39 and CD73) on γδ T cell subsets. We identified an abundant infiltration of Vδ1 T cells in the MALs and TILs. These cells varied in their differentiation: The majority of Vδ1 TILs displayed an effector memory (EM) phenotype, whereas Vδ1 MALs had a more mature phenotype of terminally differentiated effector memory cells (TEMRA) with high CD45RA expression. TIGIT and TIM-3 were abundantly expressed in both MALs and PBLs, whereas Vδ1 TILs exhibited the highest levels of PD-1, CD39, and Ox40. We also observed specific clusters on mature differentiation stages for the analyzed molecules. Regarding co-expression, Vδ1 TILs showed the highest levels of cells co-expressing TIGIT with PD-1 or CD39 compared to MALs and PBLs. In conclusion, the Vδ1 T cell population showed a high prevalence in the MALs and primary tumors of OvCA patients. Due to their (co-)expression of targetable immune receptors, in particular TIGIT with PD-1 and CD39 in TILs, Vδ1 T cell-based approaches combined with the inhibition of these targets might represent a promising strategy for OvCA.


Assuntos
Neoplasias Ovarianas , Receptor de Morte Celular Programada 1 , Apirase , Carcinoma Epitelial do Ovário/genética , Feminino , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Neoplasias Ovarianas/patologia , Receptor de Morte Celular Programada 1/genética , Receptores Imunológicos
7.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884723

RESUMO

This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16- and CD56brightCD16- NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16- NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.


Assuntos
Apirase/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/imunologia , Receptor A2A de Adenosina/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apirase/antagonistas & inibidores , Estudos de Casos e Controles , Humanos , Imunoterapia , Leucemia Mieloide Aguda/terapia , Pessoa de Meia-Idade , Receptores Imunológicos/antagonistas & inibidores , Adulto Jovem
8.
Front Med (Lausanne) ; 8: 763773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820398

RESUMO

Background: γδ T cells represent a unique T cell subpopulation due to their ability to recognize cancer cells in a T cell receptor- (TCR) dependent manner, but also in a non-major histocompatibility complex- (MHC) restricted way via natural killer receptors (NKRs). Endowed with these features, they represent attractive effectors for immuno-therapeutic strategies with a better safety profile and a more favorable anti-tumor efficacy in comparison to conventional αß T cells. Also, remarkable progress has been achieved re-activating exhausted T lymphocytes with inhibitors of co-regulatory receptors e.g., programmed cell death protein 1 (PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT) and of the adenosine pathway (CD39, CD73). Regarding γδ T cells, little evidence is available. This study aimed to immunophenotypically characterize γδ T cells from patients with diagnosed acute myeloid leukemia (AML) in comparison to patients with multiple myeloma (MM) and healthy donors (HD). Methods: The frequency, differentiation, activation, and exhaustion status of bone marrow- (BM) derived γδ T cells from patients with AML (n = 10) and MM (n = 11) were assessed in comparison to corresponding CD4+ and CD8+ T cells and peripheral blood- (PB) derived γδ T cells from HDs (n = 16) using multiparameter flow cytometry. Results: BM-infiltrating Vδ1 T cells showed an increased terminally differentiated cell population (TEMRAs) in AML and MM in comparison to HDs with an aberrant subpopulation of CD27-CD45RA++ cells. TIGIT, PD-1, TIM-3, and CD39 were more frequently expressed by γδ T cells in comparison to the corresponding CD4+ T cell population, with expression levels that were similar to that on CD8+ effector cells in both hematologic malignancies. In comparison to Vδ2 T cells, the increased frequency of PD-1+-, TIGIT+-, TIM-3+, and CD39+ cells was specifically observed on Vδ1 T cells and related to the TEMRA Vδ1 population with a significant co-expression of PD-1 and TIM-3 together with TIGIT. Conclusion: Our results revealed that BM-resident γδ T cells in AML and MM express TIGIT, PD-1, TIM-3 and CD39. As effector population for autologous and allogeneic strategies, inhibition of co-inhibitory receptors on especially Vδ1 γδ T cells may lead to re-invigoration that could further increase their cytotoxic potential.

9.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639011

RESUMO

The prognosis of elderly AML patients is still poor due to chemotherapy resistance. The Hedgehog (HH) pathway is important for leukemic transformation because of aberrant activation of GLI transcription factors. MBZ is a well-tolerated anthelmintic that exhibits strong antitumor effects. Herein, we show that MBZ induced strong, dose-dependent anti-leukemic effects on AML cells, including the sensitization of AML cells to chemotherapy with cytarabine. MBZ strongly reduced intracellular protein levels of GLI1/GLI2 transcription factors. Consequently, MBZ reduced the GLI promoter activity as observed in luciferase-based reporter assays in AML cell lines. Further analysis revealed that MBZ mediates its anti-leukemic effects by promoting the proteasomal degradation of GLI transcription factors via inhibition of HSP70/90 chaperone activity. Extensive molecular dynamics simulations were performed on the MBZ-HSP90 complex, showing a stable binding interaction at the ATP binding site. Importantly, two patients with refractory AML were treated with MBZ in an off-label setting and MBZ effectively reduced the GLI signaling activity in a modified plasma inhibitory assay, resulting in a decrease in peripheral blood blast counts in one patient. Our data prove that MBZ is an effective GLI inhibitor that should be evaluated in combination to conventional chemotherapy in the clinical setting.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Mebendazol/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Moduladores de Tubulina/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Estudos de Casos e Controles , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/química
10.
Ann Hematol ; 100(12): 2933-2941, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34333666

RESUMO

Modern cancer therapies increased the survival rates of acute myeloid leukemia (AML) patients tremendously. However, the complexity of the disease and the identification of new targets require the adaptation of treatment protocols to reduce side effects and increase benefit for the patients. One key regulator of leukemogenesis and chemotherapy resistance in AML is the Hedgehog (HH) signaling pathway. It is deregulated in numerous cancer entities and inhibition of its downstream transcription factors GLI translates into anti-leukemic effects. One major regulator of GLI is BRD4, a BET family member with epigenetic functions. We investigated the effect of ZEN-3365, a novel BRD4 inhibitor, on AML cells in regard to the HH pathway. We show that ZEN-3365 alone or in combination with GANT-61 reduced GLI promoter activity, cell proliferation and colony formation in AML cell lines and primary cells. Our findings strongly support the evaluation of the BRD4 inhibitor ZEN-3365 as a new therapeutic option in AML.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
11.
J Leukoc Biol ; 109(1): 77-90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617048

RESUMO

B cells play a central role in antiviral and antiparasitic immunity, not only as producers of antibodies, but also as APCs and mediators of inflammation. In this study, we used 16-color flow cytometry analysis to investigate the frequency, differentiation, and activation status of peripheral B cells of patients with SARS-CoV-2 infection or acute Plasmodium falciparum malaria compared with the healthy individuals. As a main result, we observed an increase of the frequency of (CD27-, CD21-) atypical memory B cells and (CD19+, CD27+, CD38+) plasmablasts in malaria and COVID-19 patients. Additionally, CD86, PD-1, CXCR3, and CD39 expression was up-regulated, whereas CD73 was down-regulated on plasmablasts of COVID-19 and malaria patients compared with the bulk B cell population. In particular, there was a more pronounced loss of CD73+ B cells in malaria. The frequency of plasmablasts positively correlated with serum levels of CRP, IL-6, and LDH of COVID-19 patients. In the longitudinal course of COVID-19, a rapid normalization of the frequency of atypical memory B cells was observed. The role and function of plasmablasts and atypical memory B cells in COVID-19 and other acute infections remain to be further investigated. The role of B cells as either "driver or passenger" of hyperinflammation during COVID-19 needs to be clarified.


Assuntos
COVID-19/imunologia , Memória Imunológica , Malária Falciparum/imunologia , Plasmócitos/imunologia , Plasmodium falciparum/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Antígenos CD/imunologia , COVID-19/patologia , Feminino , Humanos , Malária Falciparum/patologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/patologia
12.
Oncoimmunology ; 8(12): e1674605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741778

RESUMO

Immune checkpoints are intensively investigated as targets in cancer therapy. T-cell immunoreceptor with immunoglobulin (Ig) and ITIM domains (TIGIT) and its ligand poliovirus receptor (PVR) are recently emerging as novel promising targets in immunotherapy. Here, we show that high expression of PVR represents an independent prognostic marker being associated with poor outcome for breast cancer patients. Furthermore, PVR mRNA, as well as protein expression, is associated with more aggressive breast cancer subtypes such as HER2 positive and triple-negative breast cancer. In vitro, blocking TIGIT or PVR resulted in enhanced immune cell-mediated lysis of breast cancer cell lines SKBR-3, MDA-MB-231, MDA-MB-468, and BT549 and additionally increased the cytotoxic effects of a bispecific T cell engager BiTE® antibody construct targeting EGFR. Taken together, our data identify the immune checkpoint factor PVR as a novel prognostic marker in breast cancer and indicate that blocking the TIGIT-PVR axis might represent a novel therapeutic option for the treatment of breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...