Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 133(1): 133-147, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595337

RESUMO

KEY MESSAGE: For genomic prediction within biparental families using multiple biparental families, combined training sets comprising full-sibs from the same family and half-sib families are recommended to reach high and robust prediction accuracy, whereas inclusion of unrelated families is risky and can have negative effects. In recycling breeding, where elite inbreds are recombined to generate new source material, genomic and phenotypic information from lines of numerous biparental families (BPFs) is commonly available for genomic prediction (GP). For each BPF with a large number of candidates in the prediction set (PS), the training set (TS) can be composed of lines from the same full-sib family or multiple related and unrelated families to increase the TS size. GP was applied to BPFs generated in silico and from two published experiments to evaluate the prediction accuracy ([Formula: see text]) of different TS compositions. We compared [Formula: see text] for individual pairs of BPFs using as TS either full-sib, half-sib, or unrelated BPFs. While full-sibs yielded highly positive [Formula: see text] and half-sibs also mostly positive [Formula: see text] values, unrelated families had often negative [Formula: see text], and including these families in a combined TS reduced [Formula: see text]. By simulations, we demonstrated that optimized TS compositions exist, yielding 5-10% higher [Formula: see text] than the TS including all available BPFs. However, identification of poorly predictive families and finding the optimal TS composition with various quantitative-genetic parameters estimated from available data was not successful. Therefore, we suggest omitting unrelated families and combining in the TS full-sib and few half-sib families produced by specific mating designs, with a medium number (~ 50) of genotypes per family. This helps in balancing high [Formula: see text] in GP with a sufficient effective population size of the entire breeding program for securing high short- and long-term selection progress.


Assuntos
Genoma de Planta , Genômica , Zea mays/genética , Ligação Genética
2.
Theor Appl Genet ; 132(12): 3333-3345, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31559526

RESUMO

KEY MESSAGE: Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantitative traits and make it accessible for breeding and genome-based studies. Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.


Assuntos
Variação Genética , Genética Populacional , Melhoramento Vegetal , Zea mays/genética , Cruzamentos Genéticos , Europa (Continente) , Genótipo , Haploidia , Fenótipo
3.
Theor Appl Genet ; 132(8): 2273-2284, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31062045

RESUMO

KEY MESSAGE: Mainly additive gene action governed inheritance of haploid male fertility, although epistatic effects were also significant. Recurrent selection for haploid male fertility resulted in substantial improvement in this trait. The doubled haploid (DH) technology offers several advantages in maize breeding compared to the traditional method of recurrent selfing. However, there is still great potential for improving the success rate of DH production. Currently, the majority of haploid plants are infertile after chromosome doubling treatment by antimitotic agents such as colchicine and cannot be selfed for production of DH lines. Improvement in haploid male fertility (HMF) by selection for a higher spontaneous chromosome doubling rate (SDR) has the potential to increase DH production efficiency. To investigate the gene action governing SDR in two breeding populations, we adapted the quantitative-genetic model of Eberhart and Gardner (in Biometrics 22:864-881. https://doi.org/10.2307/2528079 , 1966) for the case of haploid progeny from ten DH lines and corresponding diallel crosses. Furthermore, we carried out three cycles of recurrent selection for SDR in two additional populations to evaluate the selection gain for this trait. Additive genetic effects predominated in both diallel crosses, but epistatic effects were also significant. Entry-mean heritability of SDR observed for haploid progeny of these populations exceeded 0.91, but the single-plant heritability relevant to selection was low, ranging from 0.11 to 0.19. Recurrent selection increased SDR from approximately 5-50%, which suggests the presence of few QTL with large effects. This improvement in HMF is greater than the effect of standard colchicine treatment, which yields at maximum 30% fertile haploids. Altogether, the results show the great potential of spontaneous chromosome doubling to streamline development DH lines and to enable new breeding schemes with more efficient allocation of resources.


Assuntos
Cromossomos de Plantas/genética , Cruzamentos Genéticos , Haploidia , Seleção Genética , Zea mays/genética , Zea mays/fisiologia , Fertilidade/genética , Genótipo , Pólen/genética
4.
Theor Appl Genet ; 132(6): 1897-1908, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877313

RESUMO

KEY MESSAGE: Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.


Assuntos
Variação Genética , Haploidia , Melhoramento Vegetal , Sementes/genética , Seleção Genética , Zea mays/genética , Cruzamentos Genéticos , Europa (Continente) , Genótipo , Fenótipo
5.
Genetics ; 210(4): 1185-1196, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257934

RESUMO

Thousands of maize landraces are stored in seed banks worldwide. Doubled-haploid libraries (DHL) produced from landraces harness their rich genetic diversity for future breeding. We investigated the prospects of genomic prediction (GP) for line per se performance in DHL from six European landraces and 53 elite flint (EF) lines by comparing four scenarios: GP within a single library (sL); GP between pairs of libraries (LwL); and GP among combined libraries, either including (cLi) or excluding (cLe) lines from the training set (TS) that belong to the same DHL as the prediction set. For scenario sL, with N = 50 lines in the TS, the prediction accuracy (ρ) among seven agronomic traits varied from -0.53 to 0.57 for the DHL and reached up to 0.74 for the EF lines. For LwL, ρ was close to zero for all DHL and traits. Whereas scenario cLi showed improved ρ values compared to sL, ρ for cLe remained at the low level observed for LwL. Forecasting ρ with deterministic equations yielded inflated values compared to empirical estimates of ρ for the DHL, but conserved the ranking. In conclusion, GP is promising within DHL, but large TS sizes (N > 100) are needed to achieve decent prediction accuracy because LD between QTL and markers is the primary source of information that can be exploited by GP. Since production of DHL from landraces is expensive, we recommend GP only for very large DHL produced from a few highly preselected landraces.


Assuntos
Variação Genética/genética , Genoma de Planta/genética , Genômica , Zea mays/genética , Genótipo , Haploidia , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...