Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 191(1): 79-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22377634

RESUMO

The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Temperatura , Alelos , Viabilidade Microbiana , Mutagênese , Mutação , Fenótipo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Encurtamento do Telômero
2.
Genetics ; 186(4): 1147-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837994

RESUMO

In Saccharomyces cerevisiae, association between the Est1 telomerase subunit and the telomere-binding protein Cdc13 is essential for telomerase to be recruited to its site of action. A current model proposes that Tel1 binding to telomeres marks them for elongation, as the result of phosphorylation of a proposed S/TQ cluster in the telomerase recruitment domain of Cdc13. However, three observations presented here argue against one key aspect of this model. First, the pattern of Cdc13 phosphatase-sensitive isoforms is not altered by loss of Tel1 function or by mutations introduced into two conserved serines (S249 and S255) in the Cdc13 recruitment domain. Second, an interaction between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independent. Finally, a derivative of Cdc13, cdc13-(S/TQ)11→(S/TA)11, in which every potential consensus phosphorylation site for Tel1 has been eliminated, confers nearly wild-type telomere length. These results are inconsistent with a model in which the Cdc13-Est1 interaction is regulated by Tel1-mediated phosphorylation of the Cdc13 telomerase recruitment domain. We propose an alternative model for the role of Tel1 in telomere homeostasis, which is based on the assumption that Tel1 performs the same molecular task at double-strand breaks (DSBs) and chromosome termini.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Hemostasia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...