Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Neurophysiol ; 33(2): 127-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26690549

RESUMO

INTRODUCTION: With deepening of anesthesia-induced comatose states, the EEG becomes fragmented by increasing periods of suppression. When measured from conventional EEG recordings, the binary burst-suppression signal (BS) appears similar across the scalp. As such, the BS ratio (BSR), quantifying the fraction of time spent in suppression, is clinically considered a global index of brain function in sedation monitoring. Recent studies indicate that BS may be considerably asynchronous when measured with higher spatial resolution such as on electrocorticography. The authors investigated the magnitude of BSR changes with cortical recording interelectrode distance. METHODS: The authors selected fronto-parietal electrocorticography recordings showing propofol-induced BS recorded via 8-electrode strips (1-cm interelectrode distance) during cortical motor mapping in 31 patients. For 1-minute epochs, bipolar recordings were computed between each electrode pair. The median BSR, burst duration (BD), and bursting frequency were derived for each interelectrode distance. RESULTS: At 1-cm interelectrode distance, with increasing BSR, BD decreased exponentially. For a BSR between 50% and 80%, BD reached a plateau of 2.1 seconds while the bursting frequency decreased from 14 to 6 bursts per minute. With increasing interelectrode distance, BD increased at a rate of 0.2 seconds per cm. This correlated with a decrease in BSR with distance that reached the rate of -4.4 percentage per centimeters during deepest anesthesia. CONCLUSIONS: With increasing cortical interelectrode recording distance, burst summation leads to an increasing BD associated with a reduction in BSR. Standardization of interelectrode distance is important for cortical BSR measurements.


Assuntos
Eletrocorticografia/métodos , Eletrodos , Mapeamento Encefálico/métodos , Eletrocorticografia/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
J Clin Neurosci ; 21(6): 1011-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24679940

RESUMO

Neurophysiologic mapping of the primary motor cortex (PMC) is commonly used in supratentorial surgery. Electrical cortical stimulation is guided by anatomic landmarks towards the precentral gyrus, with recording of the triggered primary motor responses (TPMR) in the contralateral hemibody. Thus, factors such as distortion of the pericentral anatomy, small surgical fields, brain shifts and miscalibrated neuronavigational systems may lengthen the process and result in unnecessary stimulations, increasing the probability of triggering seizures. We hypothesized that central sulcus localization via the median somatosensory evoked potentials phase reversal technique (MSSEP PRT) accurately guides the surgeon, resulting in prompt identification of the PMC with minimal electrical stimulation. Multivariate Cox regression was used to study the impact of MSSEP PRT on time spent performing electrical cortical stimulation to TPMR. The analysis was adjusted for presence of increased cortical excitability, high motor thresholds, lesions close to PMC and fMRI data, in 100 consecutive standardized motor mapping procedures for brain tumor resection and epilepsy surgery. Phase reversal and change morphology of the recorded somatosensory evoked potentials quadrupled (hazard ratio [HR] 4.13, p<0.0001) and doubled (HR 2.14, p=0.02) the rate of obtaining TPMR, respectively. A 1mA increase in motor threshold decreased the rate by 9% (HR 0.91, p=0.0002). Afterdischarges triggered before TPMR and lesions in close proximity to PMC decreased the rate of TPMR by 76% (HR 0.23, p<0.0001) and 48% (HR 0.52, p=0.04), respectively. Informative PRT decreases stimulation time. Afterdischarges triggered before TPMR, high motor thresholds and lesions close to the PMC increase it.


Assuntos
Potencial Evocado Motor/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Intraoperatória/métodos , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Adolescente , Adulto , Idoso , Criança , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
3.
J Clin Neurophysiol ; 31(2): 133-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24691230

RESUMO

PURPOSE: The burst suppression (BS) EEG patterns induced by general anesthesia can react to somatosensory stimuli. We investigated this reactivity by studying the effect of peripheral nerve stimulation used for routine intraoperative spinal cord monitoring by somatosensory evoked potentials on BS patterns. METHODS: The relative time spent in suppression expressed as BS ratio (BSR) and mean burst duration were measured before (BSR(Pre)), during (BSR(Stim)), and after (BSR(Post)) a 60-second repetitive electrical ulnar nerve stimulation in nine patients under total intravenous general anesthesia with propofol. The BS reactivity was measured as BSR(Pre)-BSR(Stim). RESULTS: Overall, 27 trials were included with BSR(Pre) up to 77%, indistinguishable from BSR(Post). During stimulation, the mean BSR transiently decreased from 42% to 35%. For each 1% increase in BSR(Pre), the BS reactivity increased with 0.6%, whereas the burst duration remained approximately 3 seconds. For BSR(Pre) below 30%, the BS reactivity was negligible. CONCLUSIONS: Data from this study show that somatosensory input can evoke bursts, altering the "spontaneous" deep BS patterns (BSR(Pre) >30%). Further studies are necessary to objectively assess the clinical relevance of stimulus-induced BS reactivity during deep general anesthesia.


Assuntos
Anestesia Geral/métodos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Intraoperatória/métodos , Adulto , Idoso , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Doenças da Medula Espinal/cirurgia , Adulto Jovem
4.
Neurosurgery ; 74(4): 437-46; discussion 446, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24448182

RESUMO

BACKGROUND: Safe resection of intramedullary spinal cord tumors can be challenging, because they often alter the cord anatomy. Identification of neurophysiologically viable dorsal columns (DCs) and of neurophysiologically inert tissue, eg, median raphe (MR), as a safe incision site is crucial for avoiding postoperative neurological deficits. We present our experience with and improvements made to our previously described technique of DC mapping, successfully applied in a series of 12 cases. OBJECTIVE: To describe a new, safe, and reliable technique for intraoperative DC mapping. METHODS: The right and left DCs were stimulated by using a bipolar electric stimulator and the triggered somatosensory evoked potentials recorded from the scalp. Phase reversal and amplitude changes of somatosensory evoked potentials were used to neurophysiologically identify the laterality of DCs, the inert MR, as well as other safe incision sites. RESULTS: The MR location was neurophysiologically confirmed in all patients in whom this structure was first visually identified as well as in those in whom it was not, with 1 exception. DCs were identified in all patients, regardless of whether they could be visually identified. In 3 cases, negative mapping with the use of this method enabled the surgeon to reliably identify additional inert tissue for incision. None of the patients had postoperative worsening of the DC function. CONCLUSION: Our revised technique is safe and reliable, and it can be easily incorporated into routine intramedullary spinal cord tumor resection. It provides crucial information to the neurosurgeon to prevent postoperative neurological deficits.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória/métodos , Neoplasias da Medula Espinal/cirurgia , Coluna Vertebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coluna Vertebral/fisiologia , Coluna Vertebral/cirurgia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...