Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Educ ; 33(5): 1095-1107, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886275

RESUMO

Three-dimensional (3D) printing is increasingly used in medical education and paediatric cardiology. A technology-enhanced learning (TEL) module was designed to accompany 3D printed models of congenital heart disease (CHD) to aid in the teaching of medical students. There are few studies evaluating the attitudes and perceptions of medical students regarding their experience of learning about CHD using 3D printing. This study aimed to explore senior medical students' experiences in learning about paediatric cardiology through a workshop involving 3D printed models of CHD supported by TEL in the form of online case-based learning. A mixed-methods evaluation was undertaken involving a post-workshop questionnaire (n = 94 students), and focus groups (n = 16 students). Focus group and free-text questionnaire responses underwent thematic analysis. Questionnaire responses demonstrated widespread user satisfaction; 91 (97%) students agreed that the workshop was a valuable experience. The highest-level satisfaction was for the physical 3D printed models, the clinical case-based learning, and opportunity for peer collaboration. Thematic analysis identified five key themes: a variable experience of prior learning, interplay between physical and online models, flexible and novel workshop structure, workshop supported the learning outcomes, and future opportunities for learning using 3D printing. A key novel finding was that students indicated the module increased their confidence to teach others about CHD and recommended expansion to other parts of the curriculum. 3D printed models of CHD are a valuable learning resource and contribute to the richness and enjoyment of medical student learning, with widespread satisfaction. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-023-01840-w.

2.
Med Sci Educ ; 32(6): 1513-1520, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36407817

RESUMO

Introduction: 3D printing has recently emerged as an alternative to cadaveric models in medical education. A growing body of research supports the use of 3D printing in this context and details the beneficial educational outcomes. Prevailing studies rely on participants' stated preferences, but little is known about actual student preferences. Methods: A mixed methods approach, consisting of structured observation and computer vision, was used to investigate medical students' preferences and handling patterns when using 3D printed versus cadaveric models in a cardiac pathology practical skills workshop. Participants were presented with cadaveric samples and 3D printed replicas of congenital heart deformities. Results: Analysis with computer vision found that students held cadaveric hearts for longer than 3D printed models (7.71 vs. 6.73 h), but this was not significant when comparing across the four workshops. Structured observation found that student preferences changed over the workshop, shifting from 3D printed to cadaveric over time. Interactions with the heart models (e.g., pipecleaners) were comparable. Conclusion: We found that students had a slight preference for cadaveric hearts over 3D printed hearts. Notably, our study contrasts with other studies that report student preferences for 3D printed learning materials. Given the relative equivalence of the models, there is opportunity to leverage 3D printed learning materials (which are not scarce, unlike cadaveric materials) to provide equitable educational opportunities (e.g., in rural settings, where access to cadaveric hearts is less likely).

3.
Sci Transl Med ; 9(415)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118260

RESUMO

Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping, which imparts an approximately 24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence, the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately affect the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse's active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than nighttime wounds. We suggest that circadian regulation of the cytoskeleton influences wound-healing efficacy from the cellular to the organismal scale.


Assuntos
Actinas/metabolismo , Ritmo Circadiano , Fibroblastos/metabolismo , Fibroblastos/patologia , Cicatrização , Queimaduras/patologia , Relógios Circadianos , Humanos , Queratinócitos/patologia , Polimerização , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...