Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(10): 1967-1978, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33960617

RESUMO

Oligonucleotide (oligo)-fluorescence in situ hybridization (FISH) has rapidly becoming the new generation of FISH technique in plant molecular cytogenetics research. Genome-scale identification of single-copy oligos is the foundation of successful oligo-FISH experiments. Here, we introduce Chorus2, a software that is developed specifically for oligo selection. We demonstrate that Chorus2 is highly effective to remove all repetitive elements in selection of single-copy oligos, which is critical for the development of successful FISH probes. Chorus2 is more effective than Chorus, the original version of the pipeline, and OligoMiner for repeat removal. Chorus2 allows to select oligos that are conserved among related species, which extends the usage of oligo-FISH probes among phylogenetically related plant species. We also implemented a new function in Chorus2 that allows development of FISH probes from plant species without an assembled genome. We anticipate that Chorus2 can be used in plants as well as in mammalian and other non-plant species. Chorus2 will broadly facilitate the design of FISH probes for various types of application in molecular cytogenetics research.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Software , Animais , Hibridização in Situ Fluorescente , Sondas de Oligonucleotídeos , Oligonucleotídeos
2.
New Phytol ; 229(6): 3294-3302, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222183

RESUMO

Meiotic chromosome pairing between homoeologous chromosomes was reported in many nascent allopolyploids. Homoeologous pairing is gradually eliminated and replaced by exclusive homologous pairing in well-established allopolyploids, an evolutionary process referred to as the diploidization of allopolyploids. A fundamental question of the diploidization of allopolyploids is whether and to what extent the DNA sequence variation among homoeologous chromosomes contribute to the establishment of exclusive homologous chromosome pairing. We developed aneuploid tetraploid maize lines that contain three copies of chromosome 10 derived from inbred lines B73 and H99. We were able to identify the parental origin of each copy of chromosome 10 in the materials using oligonucleotide-based haplotype-specific chromosome painting. We demonstrate that the two identical copies of chromosome 10 from H99 pair preferentially over chromosome 10 from B73 in different stages of prophase I and metaphase I during meiosis. Thus, homologous chromosome pairing is favored to partners with the most similar DNA sequences and can be discriminated based on cryptic sequence variation. We propose that innate preference of homologous chromosome pairing exists in nascent allopolyploids and serves as the first layer that would eventually block all homoeologous chromosome pairing in allopolyploids.


Assuntos
Tetraploidia , Zea mays , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Meiose/genética , Zea mays/genética
3.
Methods Mol Biol ; 2148: 71-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32394375

RESUMO

Efficient and consistent chromosome identification is the foundation for successful cytogenetic studies. Fluorescent in situ hybridization (FISH) has been the most popular technique for chromosome identification in plants. Large insert genomic DNA clones, such as bacterial artificial chromosome (BAC) clones, and repetitive DNA sequences have been the most commonly used DNA probes for FISH. However, most of such traditional probes can only be used to identify a single chromosome or are too polymorphic to consistently identify the same chromosome in the target species. In contrast, FISH using oligonucleotide (oligo)-based probes is highly versatile. In this procedure, a large number of oligos specific to a chromosomal region, to an entire chromosome, or to multiple chromosomes are computationally identified, synthesized in parallel, and labeled as probes. In addition, each oligo probe can be used for thousands of FISH experiments and represents an infinite resource. In this chapter we describe a detailed protocol for amplification and labeling of oligo-based probes, relevant chromosome preparation, and FISH procedures.


Assuntos
Coloração Cromossômica/métodos , Sondas de DNA/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Cromossomos Artificiais Bacterianos/genética , Humanos , Sequências Repetitivas de Ácido Nucleico
4.
Chromosome Res ; 28(2): 183-194, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219602

RESUMO

Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.


Assuntos
Cromossomos de Plantas , Citogenética , Cariotipagem , Zea mays/classificação , Zea mays/genética , Inversão Cromossômica , Citogenética/métodos , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Sondas de Oligonucleotídeos
5.
Plant Genome ; 12(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290929

RESUMO

Potato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato.


Assuntos
Cromossomos de Plantas , Diploide , Melhoramento Vegetal , Solanum tuberosum/genética , Translocação Genética , Tetraploidia
6.
Chromosoma ; 127(4): 505-513, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242479

RESUMO

Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.


Assuntos
Coloração Cromossômica/métodos , Pareamento Cromossômico , Cromossomos de Plantas , Solanum/genética , Sondas de DNA/genética , Poliploidia , Solanum tuberosum/genética
7.
Front Plant Sci ; 9: 944, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018631

RESUMO

The cultivated potato (Solanum tuberosum) has a complex genetic structure due to its autotetraploidy and vegetative propagation which leads to accumulation of mutations and a highly heterozygous genome. A high degree of heterozygosity has been considered to be the main driver of fitness and agronomic trait performance in potato improvement efforts, which is negatively impacted by genetic load. To understand the genetic landscape of cultivated potato, we constructed a gynogenic dihaploid (2n = 2x = 24) population from cv. Superior, prior to development of a high-density genetic map containing 12,753 single nucleotide polymorphisms (SNPs). Common quantitative trait loci (QTL) were identified for tuber traits, vigor and height on chromosomes 2, 4, 7, and 10, while specific QTL for number of inflorescences per plant, and tuber shape were present on chromosomes 4, 6, 10, and 11. Simplex rather than duplex loci were mainly associated with traits. In general, the Q allele (main effect) detected in one or two homologous chromosomes was associated with lower mean trait values suggesting the importance of dosage allelic effects, and the presence of up to two undesired alleles in the QTL region. Loss of heterozygosity has been associated with a lower rate of fitness, yet no correlation between the percent heterozygosity and increased fitness or agronomic performance was observed. Based upon linkage phase, we reconstructed the four homologous chromosome haplotypes of cv. Superior. revealing heterogeneity throughout the genome yet nearly duplicate haplotypes occurring among the homologs of particular chromosomes. These results suggest that the potentially deleterious mutations associated with genetic load in tetraploid potato could be mitigated by multiple loci which is consistent with the theory that epistasis complicates the identification of associations between markers and phenotypic performance.

8.
New Phytol ; 218(4): 1645-1657, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29577299

RESUMO

Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat.


Assuntos
Adaptação Fisiológica/genética , Centrômero/genética , Panicum/genética , Panicum/fisiologia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Pareamento de Bases/genética , Sequência de Bases , Sequência Consenso/genética , DNA de Plantas/genética , DNA Satélite/genética , Evolução Molecular , Nucleossomos/metabolismo , Motivos de Nucleotídeos/genética , RNA Ribossômico 5S/genética
9.
Genetics ; 208(2): 513-523, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242292

RESUMO

Developing the karyotype of a eukaryotic species relies on identification of individual chromosomes, which has been a major challenge for most nonmodel plant and animal species. We developed a novel chromosome identification system by selecting and labeling oligonucleotides (oligos) located in specific regions on every chromosome. We selected a set of 54,672 oligos (45 nt) based on single copy DNA sequences in the potato genome. These oligos generated 26 distinct FISH signals that can be used as a "bar code" or "banding pattern" to uniquely label each of the 12 chromosomes from both diploid and polyploid (4× and 6×) potato species. Remarkably, the same bar code can be used to identify the 12 homeologous chromosomes among distantly related Solanum species, including tomato and eggplant. Accurate karyotypes based on individually identified chromosomes were established in six Solanum species that have diverged for >15 MY. These six species have maintained a similar karyotype; however, modifications to the FISH signal bar code led to the discovery of two reciprocal chromosomal translocations in Solanum etuberosum and S. caripense We also validated these translocations by oligo-based chromosome painting. We demonstrate that the oligo-based FISH techniques are powerful new tools for chromosome identification and karyotyping research, especially for nonmodel plant species.


Assuntos
Hibridização in Situ Fluorescente/métodos , Animais , Coloração Cromossômica/métodos , Cromossomos , Cromossomos de Plantas , Diploide , Cariótipo , Cariotipagem , Solanum lycopersicum/genética , Poliploidia , Solanum tuberosum/genética , Sintenia , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...