Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2016: 1607092, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738490

RESUMO

Proteomic studies have suggested a biochemical interaction between α subunit of the large conductance, voltage- and Ca2+-activated potassium channel (BKCaα), and annexin A5 (ANXA5), which we verify here by coimmunoprecipitation and double labelling immunocytochemistry. The observation that annexin is flipped to the outer membrane leaflet of the plasma membrane during apoptosis, together with the knowledge that the intracellular C-terminal of BKCaα contains both Ca2+-binding and a putative annexin-binding motif, prompted us to investigate the functional consequences of this protein partnership to cell death. Membrane biotinylation demonstrated that ANXA5 was flipped to the outer membrane leaflet of HEK 293 cells early in serum deprivation-evoked apoptosis. As expected, serum deprivation caused caspase-3/7 activation and this was accentuated in BKCaα expressing HEK 293 cells. The functional consequences of ANXA5 partnership with BKCaα were striking, with ANXA5 knockdown causing an increase and ANXA5 overexpression causing a decrease, in single BKCa channel Ca2+-sensitivity, measured in inside-out membrane patches by patch-clamp. Taken together, these data suggest a novel model of the early stages of apoptosis where membrane flippage results in removal of the inhibitory effect of ANXA5 on K+ channel activity with the consequent amplification of Ca2+ influx and augmented activation of caspases.


Assuntos
Anexina A5/metabolismo , Apoptose , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Anexina A5/antagonistas & inibidores , Anexina A5/genética , Cálcio/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Microscopia Confocal , Técnicas de Patch-Clamp , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Pflugers Arch ; 461(6): 665-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21301863

RESUMO

The large conductance, voltage- and calcium-activated potassium channel, BK(Ca), is a known target for the gasotransmitter, carbon monoxide (CO). Activation of BK(Ca) by CO modulates cellular excitability and contributes to the physiology of a diverse array of processes, including vascular tone and oxygen-sensing. Currently, there is no consensus regarding the molecular mechanisms underpinning reception of CO by the BK(Ca). Here, employing voltage-clamped, inside-out patches from HEK293 cells expressing single, double and triple cysteine mutations in the BK(Ca) α-subunit, we test the hypothesis that CO regulation is conferred upon the channel by interactions with cysteine residues within the RCK2 domain. In physiological [Ca(2+)](i), all mutants carrying a cysteine substitution at position 911 (C911G) demonstrated significantly reduced CO sensitivity; the C911G mutant did not express altered Ca(2+)-sensitivity. In contrast, histidine residues in RCK1 domain, previously shown to ablate CO activation in low [Ca(2+)](i), actually increased CO sensitivity when [Ca(2+)](i) was in the physiological range. Importantly, cyanide, employed here as a substituent for CO at potential metal centres, occluded activation by CO; this effect was freely reversible. Taken together, these data suggest that a specific cysteine residue in the C-terminal domain, which is close to the Ca(2+) bowl but which is not involved in Ca(2+) activation, confers significant CO sensitivity to BK(Ca) channels. The rapid reversibility of CO and cyanide binding, coupled to information garnered from other CO-binding proteins, suggests that C911 may be involved in formation of a transition metal cluster which can bind and, thereafter, activate BK(Ca).


Assuntos
Monóxido de Carbono/metabolismo , Cisteína/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Cisteína/genética , Células HEK293 , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Técnicas de Patch-Clamp , Cianeto de Potássio/farmacologia
3.
Respir Physiol Neurobiol ; 172(3): 169-78, 2010 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-20576528

RESUMO

Recent evidence suggests that H(2)S contributes to activation of the carotid body by hypoxia by inhibiting K(+) channels. Here, we determine both the molecular identity of the K(+) channel target within the carotid body and the biophysical characteristics of the H(2)S-evoked inhibition by analyzing native rat and human recombinant BK(Ca) channel activity in voltage-clamped, inside-out membrane patches. Rat glomus cells express the enzymes necessary for the endogenous generation of H(2)S, cystathionine-beta-synthase and cystathionine-gamma-lyase. H(2)S inhibits native carotid body and human recombinant BK(Ca) channels with IC(50) values of around 275 microM. Inhibition by H(2)S is rapid and reversible, works by a mechanism which is distinct from that suggested for CO gas regulation of this channel and does not involve an interaction with either the "Ca bowl" or residues distal to this Ca(2+)-sensing domain. These data show that BK(Ca) is a K(+) channel target of H(2)S, and suggest a mechanism to explain the H(2)S-dependent component of O(2) sensing in the carotid body.


Assuntos
Poluentes Atmosféricos/farmacologia , Sulfeto de Hidrogênio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Bloqueadores dos Canais de Potássio , Animais , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Linhagem Celular , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Eletrofisiologia , Humanos , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Mutação , Técnicas de Patch-Clamp , Cianeto de Potássio/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
4.
Ann N Y Acad Sci ; 1177: 112-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19845613

RESUMO

The ability of ion channels to respond to an acute perturbation in oxygen tension is a widespread phenomenon, which encompasses many of the major ion channel families. Integral to the ability of several ion channels to respond to acute hypoxic challenge is modulation by upstream enzymatic reactions, suggesting that many ion channels sense oxygen via enzyme-linked processes. Several enzyme-linked oxygen sensing systems have been proposed, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent production of hydrogen peroxide, hemoxygenase-dependent generation of carbon monoxide, adenosine monophosphate (AMP) kinase-dependent channel phosphorylation, and src-Lck protein tyrosine kinase, via a currently undetermined mechanism. Each of these enzymes has been shown to endow specific ion channels with the ability to respond to changes in oxygen, with hypoxia exclusively evoking channel inhibition. This article reviews these proposed mechanisms and presents new insights into how one system, hemeoxygenase-2, confers oxygen sensitivity to large conductance, voltage- and calcium-activated potassium channels.


Assuntos
Oxigênio/metabolismo , Canais de Potássio/metabolismo , Adenilato Quinase/metabolismo , Animais , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , NADPH Oxidases/metabolismo , Quinases da Família src/metabolismo
5.
Pflugers Arch ; 456(3): 561-72, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18180950

RESUMO

Carbon monoxide (CO) is a potent activator of large conductance, calcium-dependent potassium (BK Ca) channels of vascular myocytes and carotid body glomus cells or when heterologously expressed. Using the human BK Ca channel alpha1-subunit (hSlo1; KCNMA1) stably and transiently expressed in human embryonic kidney 293 cells, the mechanism and structural basis of channel activation by CO was investigated in inside-out, excised membrane patches. Activation by CO was concentration dependent (EC50 approximately 20 microM), rapid, reversible, and evoked a shift in the V 0.5 of -20 mV. CO evoked no changes in either single channel conductance or in deactivation rate but augmented channel activation rate. Activation was independent of the redox state of the channel, or associated compounds/protein partners, and was partially dependent on [Ca2+]i in the physiological range (100-1,000 nM). Importantly, CO "super-stimulated" BK Ca activity even in saturating [Ca2+]i. Single or double mutation of two histidine residues previously implicated in CO sensing did not suppress CO activation but replacing the S9-S10 module of the C-terminal of Slo1 with that of Slo3 completely prevented the action of CO. These findings show that a motif in the S9-S10 part of the C-terminal is essential for CO activation and suggest that this gas transmitter activates the BK Ca channel by redox-independent changes in gating.


Assuntos
Monóxido de Carbono/metabolismo , Ativação do Canal Iônico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Humanos , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Oxirredução , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transfecção
6.
Biochem Biophys Res Commun ; 336(4): 1251-8, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16168386

RESUMO

The tandem P domain potassium channel family includes five members of the acid-sensing subfamily, TASK. TASK channels are active at resting potential and are inhibited by extracellular protons, suggesting they function as acid sensors and control excitability/ion homeostasis. Indeed, TASK-2 (KCNK5) has been shown to control excitability, volume regulation, bicarbonate handling, and apoptosis in a variety of tissues. With such diverse functions being ascribed to TASK-2, it is important to understand long-term as well as short-term regulation of this important channel. Thus, we have cloned the TASK-2 promoter, demonstrated that its transcriptional activity is dependent upon pO(2), shown that deletion of overlapping consensus binding sites for NF-kappaB/Elk-1 ablates this O(2) sensitivity, and proved that Elk-1 binds preferentially to this site. Furthermore, the consequences of chronic hypoxia on natively expressed TASK-2 are decreased steady-state mRNA and cell depolarization showing that TASK-2 contributes to the excitability of this important lung cell type.


Assuntos
Oxigênio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Regiões Promotoras Genéticas , Sequência de Bases , Hipóxia Celular , Linhagem Celular Tumoral , Clonagem Molecular , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Biol Chem ; 278(51): 51422-32, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14522958

RESUMO

Various cardiorespiratory diseases (e.g. congestive heart failure, emphysema) result in systemic hypoxia and patients consequently demonstrate adaptive cellular responses which predispose them to conditions such as pulmonary hypertension and stroke. Central to many affected excitable tissues is activity of large conductance, Ca2+-activated K+ (maxiK) channels. We have studied maxiK channel activity in HEK293 cells stably co-expressing the most widely distributed of the human alpha- and beta-subunits that constitute these channel following maneuvers which mimic severe hypoxia. At all [Ca2+]i, chronic hypoxia (approximately 18 mm Hg, 72 h) increased K+ current density, most markedly at physiological [Ca2+]i K+ currents in cells cultured in normoxia showed a [Ca2+]i-dependent sensitivity to acute hypoxic inhibition ( approximately 25 mm Hg, 3 min). However, chronic hypoxia dramatically changed the Ca2+ sensitivity of this acute hypoxic inhibitory profile such that low [Ca2+]i could sustain an acute hypoxic inhibitory response. Chronic hypoxia caused no change in alpha-subunit immunoreactivity with Western blotting but evoked a 3-fold increase in beta-subunit expression. These observations were fully supported by immunocytochemistry, which also suggested that chronic hypoxia augmented alpha/beta-subunit co-localization at the plasma membrane. Using a novel nuclear run-on assay and RNase protection we found that chronic hypoxia did not alter mRNA production rates or steady-state levels, which suggests that this important environmental cue modulates maxiK channel function via post-transcriptional mechanisms.


Assuntos
Adaptação Fisiológica , Hipóxia/metabolismo , Oxigênio/farmacologia , Canais de Potássio Cálcio-Ativados/química , Canais de Potássio Cálcio-Ativados/fisiologia , Cálcio/farmacologia , Linhagem Celular , Doença Crônica , Eletrofisiologia , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canais de Potássio Cálcio-Ativados/biossíntese , Subunidades Proteicas/biossíntese , RNA Mensageiro/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...