Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Talanta ; 278: 126357, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38959669

RESUMO

Methamphetamine (MA) is one of the most virulent illicit drugs that can be synthesized from household materials leading to its prevalent trafficking and local manufacturing in clandestine drug laboratories (clan labs). The significant problems of tracing MA in clan labs and monitoring drug abusers lie in the lag time between sample collection and analysis and the number of tests done. Capillary electrophoresis (CE) is a rapid separation technique amenable to miniaturization and field testing. Herein, we developed a simple transient isotachophoretic (tITP)-CE method to detect MA and its precursor pseudoephedrine (PSE) in clan labs and non-invasive biological fluids. The method was implemented on the ETD-100, a commercial fully automated portable CE instrument with an integrated swab-based extraction system. Within 2 min of insertion of the swab, MA and PSE were automatically extracted with a leading electrolyte (LE) and then separated on covalently modified capillaries. The ETD-100 showed a limit of detection (LOD) and quantification (LOQ) of MA 0.02 and 0.05 µg/swab and 0.02 and 0.06 µg/swab of PSE, with an enhancement factor of 118 and 328, respectively, when compared to a normal non-tITP injection. The intra and inter-day relative standard deviation in terms of migration time were in the range of 0.75-1.93 % for both MA and PSE and were 2.0-2.4 % for both MA and PSE peak height. The method was demonstrated with the detection of spiked MA and PSE on different household materials as well as in non-invasive biological fluids with a recovery above 60 %.

2.
Anal Chem ; 96(29): 11734-11741, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38987907

RESUMO

Sample preparation techniques enabling the separation and cleanup of nanoplastics removing other components present in complex sample matrices are scarce. Herein, micro-electromembrane extraction (µ-EME) has been explored for this purpose based on the extraction of nanoplastic particles across a free liquid membrane (FLM). The extraction unit is based on a perfluoroalkoxy tube sequentially filled with the acceptor solution (20 µL 5 mM phosphate buffer, pH 10.7), FLM (10 µL 1-pentanol), and donor solution (20 µL sample/standard solution). Sulfonated polystyrene beads (200 nm particle size) were selected as a model mimicking negatively charged nanoplastics. At 700 V, nanoplastics transferred from the donor solution into the FLM before moving across the FLM into the acceptor solution. Quantitative nanoplastic measurements after µ-EME were performed by injecting the acceptor solution into a capillary electrophoresis system with diode array detection. µ-EME allowed the rapid nanoplastic sample cleanup, requiring an extraction time of just 90 s and obtaining a nanoplastic transfer yield through the FLM of 60% with RSD values below 9%. The µ-EME technique enabled the efficient sample matrix cleanup of nanoplastics spiked in different tea matrices. Nanoplastic transfer yield through the FLM for black tea and flavored tea matrices were 56% and 47%, respectively, with complete sample matrix removal of UV-absorbing compounds.

3.
Anal Chem ; 96(8): 3259-3266, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363724

RESUMO

There is a current gap in sample preparation techniques integrating the separation of microplastics according to their different material types and particle sizes. We describe herein the Bidimensional Dynamic Magnetic Levitation (2D-MagLev) technique, enabling the resolution of mixtures of microplastics sorting them by plastic type and particle size. Separations are carried out in a bespoke flow cell sandwiched between two ring magnets and connected to programmable pumps for flow control. The first separation dimension is based on sequential increases in the concentration of a paramagnetic salt (MnCl2), enabling magnetic levitation of microplastics with determined densities. The second dimension is based on increasing flow rate gradients and maintaining constant MnCl2 concentrations. This fractionates the magnetically levitating microplastics according to their different particle sizes. Microplastics are therefore collected by their increasing density, and the particles corresponding to each density are fractionated from smaller to larger size. Using polyethylene microspheres with defined density (1.03-1.13 g cm-3) and size (98-390 µm) as microplastic mimicking materials, we investigated their optimum threshold velocities for their size fractionation, potential effects of medium viscosity and sample loading, and types of flow rate gradients (linear, step). Performing a separation using a combination of step gradients in both MnCl2 concentration and flow rate, mixtures comprising microplastics of two different densities and three different particle sizes were separated. 2D-MagLev is simple, fast, versatile, and robust, opening new avenues to facilitate the study of the environmental presence and impact of microplastics.

4.
Anal Chim Acta ; 1296: 342253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401922

RESUMO

BACKGROUND: The quantification of microbes, particularly live bacteria, is of utmost importance in assessing the quality of meat products. In the context of meat processing facilities, prompt identification and removal of contaminated carcasses or surfaces is crucial to ensuring the continuous production of safe meat for human consumption. The plate count method and other traditional detection methods are not only labour-intensive but also time-consuming taking 24-48 h. RESULTS: In this report, we present a novel isotachophoretic quantification method utilizing two nucleic acid stains, SYTO9 and propionic iodide, for the detection of total viable bacteria. The study employed E. coli M23 bacteria as a model organism, with an analysis time of only 30 min. The method demonstrated a limit of detection (LOD) of 184 CFU mL-1 and 14 cells mL-1 for total viable count and total cell count, respectively. Furthermore, this new approach is capable of detecting the microbial quality standard limits for food contacting surfaces (10 CFU cm-2) and meat (1.99 × 104 CFU cm-2) by swabbing an area of 10 × 10 cm2. SIGNIFICANCE: In contrast to the culture-based methods usually employed in food processing facilities, this isotachophoretic technique enables easy and rapid detection (<30 min) of microorganisms, facilitating crucial decision-making essential for maintaining product quality and safety.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Contaminação de Alimentos/análise , Escherichia coli , Contagem de Colônia Microbiana , Carne/análise , Bactérias
5.
J Microbiol Methods ; 216: 106866, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040293

RESUMO

Safety and the quality of products rely on proper cleanliness procedures and good manufacturing practices in the production environment. The use of swabs for the collection of samples from surfaces has been a common practice in industries, medicine and forensic studies. To accommodate these different purposes, many varieties of swabs have been introduced into the market, and it is important to assess the performance of these swabs before incorporating into an environmental monitoring procedure. The overall effectiveness of a swab is determined by two factors: the number of bacteria that a swab can uptake from a surface and the number of picked-up bacteria the swab can elute into a releasing buffer. This study evaluated the uptake efficiency and release efficiency of four different commercially available swabs: CleanFoam (Texwipes, USA), FLOQSwabs (Copan diagnostic Inc., USA), Hydraflock swabs (Puritan medical products, USA), and Cotton swabs. Cotton swabs showed the highest uptake efficiency (96.5 ± 1.9%), whereas CleanFoam swabs (57.9 ± 20.3%) showed the least. Both flocked (FLOQSwabs and Hydraflock) swabs showed over 80% uptake efficiency. Releasing efficiency of swabs was tested with eight different releasing buffers. Cotton swabs displayed the lowest release efficiency with most of the tested releasing buffers. When employed with Tris HEPES, Tris MOPS, Tris TAPS, FLOQSwabs, and Hydraflock swabs exhibited releasing efficiency of over 75%. The overall efficiency of the swabs was determined using TAPS as the releasing buffer and the values obtained were 80.4 ± 9.8%, 54.7 ± 16.9%, 35.0 ± 12.7% and 25.2 ± 6.9% for Hydraflock swabs, FLOQSwabs, Cotton swabs and Cleanfoam swabs, respectively.


Assuntos
Monitoramento Ambiental , Manejo de Espécimes , Monitoramento Ambiental/métodos , Manejo de Espécimes/métodos
6.
ACS Chem Neurosci ; 15(2): 346-356, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38149631

RESUMO

Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.


Assuntos
Aptâmeros de Nucleotídeos , Doenças Neurodegenerativas , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Fator Neurotrófico Derivado do Encéfalo/genética , DNA de Cadeia Simples , Biblioteca Gênica
7.
Anal Chim Acta ; 1280: 341847, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858546

RESUMO

BACKGROUND: In capillary electrophoresis (CE), the inner surface of fused-silica capillaries is commonly covalently modified with liquid silanes to control electroosmotic flow (EOF). This liquid phase deposition (LPD) approach is challenging for long and narrow-diameter capillaries (≥1 m, ≤25 µm ID) inhibiting commercial production. Here, we use chemical vapour deposition (CVD) to covalently modify capillaries with different silanes. Using a home-built CVD device, capillaries were modified with neutral (3-glycidyloxypropyl) trimethoxysilane (GPTMS), the weak base (3-aminopropyl) trimethoxysilane (APTMS), the weak acid 3-mercaptopropyltrimethoxysilane (MPTMS) and the neutral hydrophobic trichloro(1H,1H,2H,2H-perfluorooctyl) silane (PFOCTS). Gas-phase modification of GPTMS with acid and ammonia allowed further modification of the surface prior to molecular layer deposition (MLD) of poly(p-phenylene terephthalamide) (PPTA) using the self-limiting sequential reaction between terephthalaldehyde (TA) and p-phenylenediamine (PD) vapours. RESULTS: Capillaries coated with GPTMS by CVD showed a greater reduction in EOF at all pH values than the conventional LPD. APTMS showed a reduction of the EOF at pH 9, with EOF reversal observed below pH 6. MPTMS provided a slightly lower EOF than an unmodified capillary at high pH, and a slightly higher EOF at lower pH. PFOCTS provided the most consistent EOF as a function of pH. The deposition of successive layers of PPTA resulted in increased surface coverage of the polymer and a greater reduction in EOF at pH higher than 5. The stability of a 10 µm ID GPTMS coated capillary was tested at pH 8.8 in a 200 mM CHES/Tris BGE for the separation of inorganic anions. Over 1.5 months of continuous operation (≈4130 runs), the reproducibility of the apparent mobilities for chloride, nitrite, nitrate and sulfate were 2.43%, 2.56%, 2.63% and 3.05%, respectively. The intra-day and inter-day column-to-column reproducibility and batch-to-batch reproducibility for all the coated capillaries ranged between 0.34% and 3.95%. SIGNIFICANCE: The study demonstrates the superior performance of CVD coating for suppressing the EOF compared to LPD allowing the easy modification of long lengths of narrow capillary. The variation in silane, and the ability of MLD to modify and control the surface chemistry, provides a simple and facile method for surface modification. The stability of these coatings will allow long-term capillary electrophoresis monitoring of water chemistry, such as for monitoring fertiliser run-off in natural waters.

9.
Mikrochim Acta ; 190(8): 289, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439831

RESUMO

A smartphone-assisted determination of copper ions is introduced by using a down-scaled microfluidic mixer. The system was coupled with a micro-column packed with a periodic mesoporous organosilica (PMO) material for preconcentration of copper ions. Copper ions were reduced to Cu(I) on-chip to selectively form an orange-colored complex with neocuproine. A novel Android-based software was made to determine the color change of the adsorbent by analyzing red-green-blue (RGB) components of images from the packed PMO material. Four porous framework materials with high porosity and chemical stability were synthesized and compared for the extraction of the Cu-neocuproine complex. The main parameters influencing the complex extraction efficiency were optimized. The analytical performance of the method showed limit of detection and quantification of 0.2 µg L-1 and 0.5 µg L-1, respectively. The accuracy and precision of the method were determined as recovery > 92% and relative standard deviations < 5.2% at medium concentration level (n = 5). Due to accumulation of the retained analyte in a single point and elimination of the stripping step, the RGB-based method showed sensitivity and precision higher than inductively coupled plasma-atomic emission spectrometry (ICP-AES) for determination of copper ions. To investigate the applicability of the method, six different water samples were analyzed. The t-test on the data showed that the method has no significant difference when compared with ICP-AES determination.


Assuntos
Cobre , Cobre/análise , Análise Espectral/métodos , Íons
10.
Anal Chem ; 95(4): 2134-2139, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36649064

RESUMO

A polymer inclusion membrane (PIM) based sampling probe was developed for electrokinetic extraction of drugs from biological fluids. The probe was fabricated by dip-coating a nonconductive glass capillary tube in a homogeneous PIM solution for three cycles. The PIM solution comprised cellulose triacetate (CTA), 2-nitrophenyl octyl ether (NPOE), and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [EMIM][NTf2] in a ratio of 5:4:2. The developed probe electrokinetically extracted doxorubicin from human plasma, human serum, and dried blood spot (DBS). The practicability and reliability of the electrokinetic extraction were evaluated by LC-MS/MS to quantify the desorption of extracted doxorubicin. Under the optimized conditions, a quantification limit of 0.2-2 ng/mL was achieved for the three biological samples. The probe was further integrated into a portable battery-powered device for safe low-voltage (36 V) electrokinetic extraction. The developed technique is envisioned to provide a more efficient analytical workflow in the laboratory.


Assuntos
Polímeros , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Reprodutibilidade dos Testes
11.
J Chromatogr A ; 1688: 463666, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36528899

RESUMO

All pharmaceutical manufacturers are required to verify that their production equipment is free from contaminants. Here, we report the capability of a fully automated portable capillary electrophoresis instrument with an integrated sample swab extraction - the Grey Scan ETD-100 - for the detection of pharmaceutical residues on surfaces of manufacturing equipment. Lidocaine was used as a model compound and could be recovered from a surface by swabbing, extracted from the swab, and analysed within 1 min. The recovery of lidocaine from a stainless-steel coupon was 81.3 %, with a LOD of 0.13 µg/swab. This fast, sensitive, and simple method implemented on a user-friendly portable CE instrument without the need for manual sample pre-treatment provides the possibility for on-site rapid determination of equipment cleanliness in the pharmaceutical industry.


Assuntos
Indústria Farmacêutica , Aço Inoxidável , Aço Inoxidável/análise , Eletroforese Capilar , Preparações Farmacêuticas
12.
Anal Chem ; 94(51): 17947-17955, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36469617

RESUMO

A versatile method for the efficient separation of different types of microplastics from particle mixtures is presented. Magnetism-assisted density gradient separation (Mag-DG-Sep) relies on a bespoke separation cell connected to a gradient pump and located between two like-pole-facing neodymium magnets. In Mag-DG-Sep, particle mixtures initially sunk in water are subjected to a gradient of increasing concentration of MnCl2, enabling the sequential suspension and collection of particles with different densities. The suspension process is assisted by the paramagnetism of the MnCl2 solution placed between the two magnets, which contributes to focusing the ascending particles from the bottom of the separation cell to the outlet, thus enhancing the resolution of the separation process. To demonstrate the concept, a mixture of polyethylene (PE) polymer particles with a similar size range (180-212 µm) but different densities (ca. 0.98, 1.025, 1.08, and 1.35 g cm-3) was selectively separated in a single Mag-DG-Sep run. These particles were also efficiently separated when mixed with other types of particles, such as glass or soil. A generic linear MnCl2 gradient can be directly applied for sample screening covering a broad range of densities (0.98-2.20 g cm-3), while steps can be introduced in the gradient, increasing the separation resolution of particles with close densities (1.025-1.08 g cm-3). As a proof-of-concept application, Mag-DG-Sep facilitated sample preparation of microplastics present in a soil sample prior to their examination by attenuated total reflection Fourier-transform infrared spectroscopy.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Polímeros , Polietileno , Monitoramento Ambiental
13.
J Chromatogr A ; 1685: 463605, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36375217

RESUMO

A new dispersive inclusion complex microextraction (DICM) approach coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the determination of n-nitrosamine impurities in different medicinal products is demonstrated for the first time. The proposed DICM procedures consist of a dispersive liquid phase microextraction steps employing cyclodextrin as an inclusion complex agent to extract n-nitrosamines namely N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodiisopropylamine (NDIPA), N-ethyl-N-nitrosoisopropylamine (NEIPA) and N-nitroso-di-n-butylamine (NDBA) present in the medicinal products. The sample solutions were prepared by mixing 5% (m/v) NaCl solution with 1.5 mM ß-cyclodextrin and 20 mM sodium dodecyl sulphate to form a stable inclusion complex and subsequently extracted into dichloromethane as an extraction solvent. The enriched solution was reconstituted into aqueous solution prior to UPLC-MS/MS analysis. The method showed good linearity in the range of 0.036-1 ng/mL with a correlation coefficient of at least 0.995, acceptable reproducibility (RSD 0.5-5.8%, n=5), low limits of detection (0.011-0.018 ng/mL), and satisfactory relative recoveries (96-105%). The results obtained were found to be at least 10-fold more sensitive comparable to those obtained using validated direct sample dissolutions coupled with UPLC-MS/MS approach.


Assuntos
Microextração em Fase Líquida , Nitrosaminas , Nitrosaminas/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Microextração em Fase Líquida/métodos , Dimetilnitrosamina/análise
14.
New Phytol ; 235(5): 1822-1835, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35510810

RESUMO

Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.


Assuntos
Chenopodium quinoa , Tolerância ao Sal , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Transporte de Íons , Íons/metabolismo , Potássio/metabolismo , Salinidade , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Bexiga Urinária/metabolismo
15.
Anal Chim Acta ; 1208: 339790, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35525582

RESUMO

Here we have studied the effect of the thickness and printing orientation using PolyJet 3D printing to fabricate single-material cartridges with built-in porous frits enabling solid-phase extraction (SPE) by packing commercial sorbents. This is achieved by tuning the degree of interpenetration of the building material and the water-soluble support material used in PolyJet 3D printing by modifying the orientation of the print head respective to the frit. SPE cartridges printed at an orientation of 30° with a 150 µm thick integrated frit were selected for the SPE experiments in a compromise between frit permeability to flow and stability to retain commercial sorbents for SPE. The performance of the 3D printed cartridges was evaluated for the SPE of the endocrine-disrupting phenols 4-tert-octylphenol (4-tOP) and 4-nonylphenol (4-NP), comparing three commercial SPE sorbents (Evolute Express ABN, Bond Elut PPL, and Silica-C18). The best overall extraction performance was obtained using Silica-C18, and the main extraction parameters were optimized. Detection limits of 0.3 µg L-1 for 4-tOP and 1.1 µg L-1 for 4-NP were achieved using HPLC-DAD for analyte separation and quantification. Enrichment factors of 30.1 (4-tOP) and 16.2 (4-NP) were obtained under the selected conditions. The developed method was applied to water and milk powder samples obtaining satisfactory recoveries ranging from 97% to 103%. These results demonstrate the suitability of PolyJet 3D printing for the fabrication of miniaturized cartridges with integrated frits for SPE applications.


Assuntos
Extração em Fase Sólida , Água , Porosidade , Impressão Tridimensional , Dióxido de Silício , Extração em Fase Sólida/métodos
16.
Anal Chem ; 94(25): 9033-9039, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35579259

RESUMO

Microplastics have the potential to adsorb organic pollutants due to their lipophilic nature. Evaluating the distribution of multiple organic pollutants in different types of microplastics coexisting in a sample is a strenuous and challenging analytical task. Here, we report position-dependent microplastic trapping in a biphasic medium comprising a paramagnetic aqueous donor phase containing the mixed microplastics and a diamagnetic organic acceptor phase. Depending on the relative height of the sample container positioned in a magnetic field, the selective density-dependent trapping of microplastics is achieved. Concurrently, the organic pollutants adsorbed on the microplastics are desorbed in the organic acceptor phase, which is easily solidified, separated, and transferred for organic pollutant determination by high-performance liquid chromatography. This facilitates analytical studies involving multiple organic pollutants distributed in solid heterogeneous mixtures.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Ambientais/análise , Fenômenos Magnéticos , Microplásticos , Plásticos/análise , Poluentes Químicos da Água/análise
17.
J Chromatogr A ; 1668: 462895, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35231861

RESUMO

A compact, inexpensive capillary electrophoresis instrument was developed for monitoring metal ions and evaluated for Zn(II) in remote contaminated locations in western Tasmania, Australia. The portable instrument, measuring 21 cm x 10 cm x 7 cm, was powered from the USB port of a laptop computer and built from off-the-shelf components costing ∼$1200 USD. Electrophoretic separations were conducted using a fused silica capillary (10-50 µm I.D.), applying 8.5 kV over capillaries ranging from 25 cm to 40 cm in length. The capillary inlet was connected with an electrically grounded cross-piece as flow-through injection interface. Automated fluidic management was achieved by controlling four mini peristaltic pumps and a solenoid valve. Detection was realised using a purpose-built visible LED absorption detector, optimised for the detection of Co(II), Cu(II) and Zn(II) after complexation with 4-(2-Pyridylazo) resorcinol (PAR). Limits of detection of sub-µM were obtained. The instrument was tested for continuous operation in the laboratory for up to 3 months, and relative standard deviations of <5.4% were found over 945 consecutive injections. In the field, the system was able to measure 106 samples within 11 h, the time it can be powered from the laptop computer. As Field measurement of Zn(II) in western Tasmania was demonstrated to show capability for on-site metal testing.


Assuntos
Eletroforese Capilar , Zinco , Austrália , Eletroforese Capilar/métodos , Metais
18.
Electrophoresis ; 43(4): 543-547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837243

RESUMO

A frequent limitation of electroporation (EP) and chemical transformation (CT) are the need of tedious and time-consuming procedures for inducing transformation competence, the substantial number of cells required, and the low transformation yields typically achieved. Here, we show a new and rapid electrokinetic method for transformation of small number of noncompetent Escherichia coli TOP10 cells (2-3 × 105 ) at room temperature. Escherichia coli TOP10 cells and plasmid DNA are sequentially injected into a 50 µm ID capillary and focused into 11.5 nL by isotachophoresis (ITP) induced by application of high DC voltage (-16 kV). Through ITP, a large excess of plasmid DNA is brought in contact with the cell surface, with the contact time adjusted by application of a counter-pressure (1.3 psi) opposing the ITP movement. The transformation rate was more than 1000-fold higher compared to EP and CT at survival rates greater than 60%.


Assuntos
Isotacoforese , DNA , Escherichia coli/genética , Isotacoforese/métodos
19.
Chem Commun (Camb) ; 57(88): 11649-11652, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34668492

RESUMO

A functionalized porphyrin receptor was prepared to bind perfluorooctanoic acid. UV-Vis spectroscopic analysis showed the receptor gave a rapid colorimetric response that could also be detected visually at environmentally relevant concentrations. Spiked soil samples were used to demonstrate detection of perfluorooctanoic acid without intensive sample pre-treatment or laboratory instrument analysis.

20.
J Chromatogr A ; 1646: 462086, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892255

RESUMO

Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Miniaturização , Microextração em Fase Sólida/métodos , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...