Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. biol. trop ; 70(1)dic. 2022.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387720

RESUMO

Abstract Introduction: Analysis of functional feeding groups (FFG) in aquatic macroinvertebrates is important in understanding the structure, function, and dynamics of ecological processes in ecosystems. Modularity refers to the degree of compartmentalization of food webs and varies between -1 and 1. A network with a modularity value close to 1 is resilient to disturbances and can be interpreted as an indicating factor for the stability of communities. Objective: In this study, we analyzed the trophic structure of benthic macroinvertebrates in La Nitrera stream, the San Juan River, and the Cauca River in the Colombian Andes. Methods: The study was supported by ecological networking techniques using Gephi software. We studied nine sites in dry, rainy, and transition seasons in 2017 and 2018, monitoring changes in the altitude gradient. At each of the sites, the organisms were captured and determined, and physicochemical and hydraulic information was obtained. Results: The variance component analysis allowed to explain the variability of the data by relating the following environmental variables: FFG, diversity, richness, modularity, season, and time. Simple multifactorial ANOVA indicated that significant changes in FFG were associated with altitude, and modularity to time. The allocation of the FFG was done by stomach analysis and secondary information. Conclusion: The transition season had the highest modularity, possibly due to the recolonization of some biotopes caused by the decrease in the velocity of water currents. La Nitrera and San Juan presented higher values than the Cauca, which may indicate that the altitudinal change and velocity of water currents affects the compartmentalization of the network.


Resumen Introducción: El análisis de grupos funcionales de alimentación (GFA) en macroinvertebrados acuáticos es importante para comprender la estructura, función y dinámica de los ecosistemas de procesos ecológicos. La modularidad se refiere al grado de compartimentación de las redes alimentarias y varía entre -1 y 1. Una red con un valor de modularidad cercano a 1 es resistente a las alteraciones y puede interpretarse como un factor indicativo para la estabilidad de las comunidades. Objetivo: En este estudio se analizó la estructura trófica de los macroinvertebrados bentónicos, un elemento importante en la calidad ambiental, en el arroyo La Nitrera, el río San Juan y el río Cauca. Métodos: El estudio contó con el apoyo de técnicas de redes ecológicas utilizando el software Gephi. En 2017 y 2018, estudiamos nueve sitios en estaciones secas, lluviosas y de transición, monitoreando cambios en el gradiente de altitud. En cada uno de los sitios se capturaron y determinaron los organismos y se recogió información fisicoquímica e hidráulica. Resultados: El análisis de componentes de varianza permitió explicar la variabilidad de los datos relacionando las siguientes variables ambientales: GFA, diversidad, riqueza, modularidad, estación y tiempo. La ANOVA simple multifactorial indicó que existen cambios significativos en los GFA en relación con la altitud, y la modularidad con el tiempo. La asignación de los GFA se realizó mediante análisis estomacal e información secundaria. Conclusión: La temporada de transición tuvo la mayor modularidad, posiblemente debido a la recolonización de algunos biotopos provocada por la disminución de la velocidad del cauce. La Nitrera y San Juan presentaron valores superiores a los del Cauca, lo que puede indicar que el cambio altitudinal y la velocidad de las corrientes de agua influyen en la compartimentación de la red.


Assuntos
Animais , Fauna Bentônica , Colômbia , Termoclina , Invertebrados/anatomia & histologia
2.
Sci Rep ; 9(1): 3721, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842480

RESUMO

Climate change is expected to have profound, partly unforeseeable effects on the composition of functional traits of complex ecosystems, such as coral reefs, and some ecosystem properties are at risk of disappearing. This study applies a novel spatially explicit, individual-based model to explore three critical life history traits of corals: heat tolerance, competitiveness and growth performance under various environmental settings. Building upon these findings, we test the adaptation potential required by a coral community in order to not only survive but also retain its diversity by the end of this century under different IPCC climate scenarios. Even under the most favourable IPCC scenario (Representative Concentration Pathway, RCP 2.6), model results indicate that shifts in the trait space are likely and coral communities will mainly consist of small numbers of temperature-tolerant and fast-growing species. Species composition of coral communities is likely to be determined by heat tolerance, with competitiveness most likely playing a subordinate role. To sustain ~15% of current coral cover under a 2 °C temperature increase by the end of the century (RCP 4.5), coral systems would have to accommodate temperature increases of 0.1-0.15 °C per decade, assuming that periodic extreme thermal events occurred every 8 years. These required adaptation rates are unprecedented and unlikely, given corals' life-history characteristics.


Assuntos
Antozoários/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Mudança Climática , Recifes de Corais , Ecossistema , Temperatura Alta
3.
Sci Rep ; 6: 34483, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694819

RESUMO

Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).


Assuntos
Produção Agrícola , Fluxo Gênico , Pólen/fisiologia , Polinização/fisiologia , Sementes/genética , Zea mays/genética , Sementes/crescimento & desenvolvimento , Zâmbia , Zea mays/crescimento & desenvolvimento
4.
Sci Total Environ ; 541: 329-340, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410707

RESUMO

The question whether global climate change invalidates the efficiency of established land use practice cannot be answered without systemic considerations on a region specific basis. In this context plant water availability and irrigation requirements, respectively, were investigated in Northern Germany. The regions under investigation--Diepholz, Uelzen, Fläming and Oder-Spree--represent a climatic gradient with increasing continentality from West to East. Besides regional climatic variation and climate change, soil conditions and crop management differ on the regional scale. In the model regions, temporal seasonal droughts influence crop success already today, but on different levels of intensity depending mainly on climate conditions. By linking soil water holding capacities, crop management data and calculations of evapotranspiration and precipitation from the climate change scenario RCP 8.5 irrigation requirements for maintaining crop productivity were estimated for the years 1991 to 2070. Results suggest that water requirement for crop irrigation is likely to increase with considerable regional variation. For some of the regions, irrigation requirements might increase to such an extent that the established regional agricultural practice might be hard to retain. Where water availability is limited, agricultural practice, like management and cultivated crop spectrum, has to be changed to deal with the new challenges.

5.
Environ Sci Eur ; 26(1): 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27752416

RESUMO

BACKGROUND: By example of a region in Northern Germany (County of Uelzen), this study investigates whether climate change is likely to require adaption of agricultural practices such as irrigation in Central Europe. Due to sandy soils with low water retention capacity and occasional insufficient rainfall, irrigation is a basic condition for agricultural production in the county of Uelzen. Thus, in the framework of the comprehensive research cluster Nachhaltiges Landmanagement im Norddeutschen Tiefland (NaLaMa-nT), we investigated whether irrigation might need to be adapted to changing climatic conditions. To this end, results from regionalised climate change modelling were coupled with soil- and crop-specific evapotranspiration models to calculate potential amounts of irrigation to prevent crop failures. Three different runs of the climate change scenario RCP 8.5 were used for the time period until 2070. RESULTS: The results show that the extent of probable necessary irrigation will likely increase in the future. For the scenario run with the highest temperature rise, the results suggest that the amount of ground water presently allowed to be extracted for irrigation might not be sufficient in the future to retain common agricultural pattern. CONCLUSIONS: The investigation at hand exemplifies data requirements and methods to estimate irrigation needs under climate change conditions. Restriction of ground water withdrawal by German environmental regulation may require an adaptation of crop selection and alterations in agricultural practice also in regions with comparable conditions.

6.
Environ Sci Pollut Res Int ; 18(1): 111-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20680699

RESUMO

PURPOSE: Feral oilseed rape has become widespread in Europe on waysides and waste ground. Its potential as a source of GM impurity in oilseed rape harvests is quantified, for the first time, by a consistent analysis applied over a wide range of study areas in Europe. METHODS: The maximum contribution of feral oilseed rape to impurities in harvested crops was estimated by combining data on feral abundance and crop yield from five established, demographic studies in agricultural habitats in Denmark, Germany (2), France and the UK, constituting over 1,500 ha of land and 16 site-years of observations. Persistence of feral populations over time was compared by visual and molecular methods. RESULTS: Ferals had become established in all regions, forming populations 0.2 to 15 km⁻². The seed they produced was always <0.0001% of the seed on crops of oilseed rape in each region. The contribution of ferals to impurity in crops through accidental harvest of seed and through cross-pollination would be an even smaller percentage. Feral oilseed rape nevertheless showed a widespread capacity to persist in all regions and retain traits from varieties no longer grown. CONCLUSIONS: Feral oilseed rape is not a relevant source of macroscopic impurity at its present density in the landscape but provides opportunity for genetic recombination, stacking of transgenes and the evolution of genotypes that under strong selection pressure could increase and re-occupy fields to constitute an economic weed burden and impurity in future crops.


Assuntos
Brassica napus/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Brassica napus/fisiologia , Monitoramento Ambiental , Europa (Continente) , Polinização , Densidade Demográfica , Dinâmica Populacional
7.
Environ Sci Pollut Res Int ; 17(8): 1479-90, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20414731

RESUMO

BACKGROUND, AIM AND SCOPE: European legislation stipulates that genetically modified organisms (GMO) have to be monitored to identify potential adverse environmental effects. A wealth of different types of monitoring data from various sources including existing environmental monitoring programmes is expected to accumulate. This requires an information system to efficiently structure, process and evaluate the monitoring data. METHODS: A structure for an Information System for Monitoring GMO (ISMO) was developed by a multidisciplinary research team. It is based on the requirement to organise all relevant information in a logical, readily accessible and functional manner. RESULTS: For the ISMO, we present a combination of three interrelated components: Firstly, an ISMO should comprise a knowledge database structured according to information related to the different scale levels of biological organisation relevant to GMO monitoring and scientific hypotheses on cause-effects which should be validated by monitoring data. Secondly, a monitoring database should be part of an ISMO containing GMO-specific monitoring data and meta-data. This monitoring database should be linked with monitoring data from other monitoring programmes which are relevant for GMO-related questions. Thirdly, an ISMO should encompass a database covering administrative and procedural data. Neither national nor international approaches to an ISMO exist yet. CONCLUSIONS: An ISMO as designed in this paper could support competent authorities in both the GMO notification process and in post-market monitoring. This includes evaluating the environmental risks of experimentally releasing GMO and placing them on the market, assessing monitoring plans and evaluating monitoring results. The ISMO should be implemented on both the national and international level, preferably combining different administrative scales. Harmonisation approaches towards GMO monitoring data are at an initial stage, but they are a precondition to coordinated GMO monitoring and to successfully implementing an ISMO. It is recommended to set up a legal basis and to agree on common strategies for the data coordination and harmonisation.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação , Organismos Geneticamente Modificados , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Sistemas de Informação Geográfica , Bases de Conhecimento , Medição de Risco
8.
Environ Sci Pollut Res Int ; 15(7): 529-35, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18839232

RESUMO

BACKGROUND, AIM AND SCOPE: Transgenic oilseed rape (Brassica napus L.; OSR) is estimated to be environmentally and economically problematic because volunteers and ferals occur frequently and because of its hybridisation potential with several wild and weedy species. A proposed mitigation strategy aims to reduce survival, in particular in conventional OSR crops, by coupling the transgenic target modification with a dwarfing gene to reduce competitive fitness. Our study allowed us to access potential ecological implications of this strategy. MATERIALS AND METHODS: On a large scale (>500 km(2)), we recorded phenological and population parameters of oilseed rape plants for several years in rural and urban areas of Northern Germany (Bremen and surroundings). The characterising parameter were analysed for differences between wild and cultivated plants. RESULTS: In rural areas, occurrences of feral and volunteer OSR together had an average density of 1.19 populations per square kilometre, in contrast to urban areas where we found 1.68 feral populations per square kilometre on average. Throughout the survey, the vegetation cover at the locations with feral OSR ranged from less than 10% to 100%. Our investigations gave clear empirical evidence that feral OSR was, on average, at least 41% smaller than cultivated OSR, independent of phenological state after onset of flowering. DISCUSSION: The findings can be interpreted as phenotypic adaptation of feral OSR plants. Therefore, it must be asked whether dwarfing could be interpreted as an improvement of pre-adaptation to feral environments. In most of the sites where feral plants occurred, germination and establishment were in locations with disturbed vegetation cover, allowing initial growth without competition. Unless feral establishment of genetically modified dwarfed traits are specifically studied, it would not be safe to assume that the mitigation strategy of dwarfing also reduces dispersal in feral environments. CONCLUSIONS AND RECOMMENDATIONS: With respect to OSR, we argue that the proposed mitigation approach could increase escape and persistence of transgene varieties rather than reducing them. We conclude that the development of effective hazard mitigation measures in the risk evaluation of genetically modified organisms requires thorough theoretical and empirical ecological analyses rather than assumptions about abstract fitness categories that apply only in parts of the environment where the plant can occur.


Assuntos
Animais Selvagens , Brassica napus/genética , Brassica napus/toxicidade , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/toxicidade , Ração Animal , Animais , Flores/crescimento & desenvolvimento , Abastecimento de Alimentos , Frutas , Geografia , Alemanha , Humanos , Desenvolvimento Vegetal , Densidade Demográfica , População Rural/estatística & dados numéricos , Plântula/crescimento & desenvolvimento , Sementes/fisiologia , População Urbana
9.
ScientificWorldJournal ; 2: 1044-62, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-12805962

RESUMO

Individual-based modelling (IBM) is an important option in ecology for the study of specific properties of complex ecological interaction networks. The main application of this model type is the analysis of population characteristics at high resolution. IBM also contributes to the advancement of ecological theory. One of the remarkable potentials of the approach is the possibility of studying self-organization and emergent properties that arise from individual actions on higher integration levels, especially on the population level. This review outlines the background and different application fields of individual-based models together with a short description of the technical implications of model setup. The limitations of this modelling approach result from the technical basis of model construction, which can handle a limited number of active entities only. Limits in biological knowledge also restrict the application of this model type. The paper presents some individual-based models that have been developed for different purposes and briefly discusses these models. Concerning the perspective of IBM, a coincidence with developments in artificial life research is explained. IBM shifts the focus of ecological analysis of dynamic systems from structurally fixed settings to the analysis of self-organizing interaction patterns that are variable in quantity and quality.


Assuntos
Modelos Teóricos , Animais , Ecologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...