Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1008: 327-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23729258

RESUMO

Biophysical methods have become established in many areas of drug discovery. Application of these methods was once restricted to a relatively small number of scientists using specialized, low throughput technologies and methods. Now, automated high-throughput instruments are to be found in a growing number of laboratories. Many biophysical methods are capable of measuring the equilibrium binding constants between pairs of molecules crucial for molecular recognition processes, encompassing protein-protein, protein-small molecule, and protein-nucleic acid interactions, and several can be used to measure the kinetic or thermodynamic components controlling these biological processes. For a full characterization of a binding process, determinations of stoichiometry, binding mode, and any conformational changes associated with such interactions are also required. The suite of biophysical methods that are now available represents a powerful toolbox of techniques which can effectively deliver this full characterization.The aim of this chapter is to provide the reader with an overview of the drug discovery process and how biophysical methods, such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance, mass spectrometry (MS), and thermal unfolding methods can answer specific questions in order to influence project progression and outcomes. The selection of these examples is based upon the experiences of the authors at AstraZeneca, and relevant approaches are highlighted where they have utility in a particular drug discovery scenario.


Assuntos
Descoberta de Drogas , Ácidos Nucleicos/química , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Calorimetria , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Estereoisomerismo , Ressonância de Plasmônio de Superfície , Termodinâmica
2.
Antimicrob Agents Chemother ; 56(3): 1240-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22183167

RESUMO

DNA gyrase is an essential enzyme in bacteria, and its inhibition results in the disruption of DNA synthesis and, subsequently, cell death. The pyrrolamides are a novel class of antibacterial agents targeting DNA gyrase. These compounds were identified by a fragment-based lead generation (FBLG) approach using nuclear magnetic resonance (NMR) screening to identify low-molecular-weight compounds that bind to the ATP pocket of DNA gyrase. A pyrrole hit with a binding constant of 1 mM formed the basis of the design and synthesis of a focused library of compounds that resulted in the rapid identification of a lead compound that inhibited DNA gyrase with a 50% inhibitory concentration (IC(50)) of 3 µM. The potency of the lead compound was further optimized by utilizing iterative X-ray crystallography to yield DNA gyrase inhibitors that also displayed antibacterial activity. Spontaneous mutants were isolated in Staphylococcus aureus by plating on agar plates containing pyrrolamide 4 at the MIC. The resistant variants displayed 4- to 8-fold-increased MIC values relative to the parent strain. DNA sequencing revealed two independent point mutations in the pyrrolamide binding region of the gyrB genes from these variants, supporting the hypothesis that the mode of action of these compounds was inhibition of DNA gyrase. Efficacy of a representative pyrrolamide was demonstrated against Streptococcus pneumoniae in a mouse lung infection model. These data demonstrate that the pyrrolamides are a novel class of DNA gyrase inhibitors with the potential to deliver future antibacterial agents targeting multiple clinical indications.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Pirróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Inibidores da Topoisomerase II , Amidas/química , Animais , Antibacterianos/química , Sítios de Ligação , Cristalografia por Raios X , DNA Girase/química , DNA Girase/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Ligação Proteica , Pirróis/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...