Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732856

RESUMO

Biometric authentication plays a vital role in various everyday applications with increasing demands for reliability and security. However, the use of real biometric data for research raises privacy concerns and data scarcity issues. A promising approach using synthetic biometric data to address the resulting unbalanced representation and bias, as well as the limited availability of diverse datasets for the development and evaluation of biometric systems, has emerged. Methods for a parameterized generation of highly realistic synthetic data are emerging and the necessary quality metrics to prove that synthetic data can compare to real data are open research tasks. The generation of 3D synthetic face data using game engines' capabilities of generating varied realistic virtual characters is explored as a possible alternative for generating synthetic face data while maintaining reproducibility and ground truth, as opposed to other creation methods. While synthetic data offer several benefits, including improved resilience against data privacy concerns, the limitations and challenges associated with their usage are addressed. Our work shows concurrent behavior in comparing semi-synthetic data as a digital representation of a real identity with their real datasets. Despite slight asymmetrical performance in comparison with a larger database of real samples, a promising performance in face data authentication is shown, which lays the foundation for further investigations with digital avatars and the creation and analysis of fully synthetic data. Future directions for improving synthetic biometric data generation and their impact on advancing biometrics research are discussed.


Assuntos
Face , Jogos de Vídeo , Humanos , Face/anatomia & histologia , Face/fisiologia , Biometria/métodos , Identificação Biométrica/métodos , Imageamento Tridimensional/métodos , Masculino , Feminino , Algoritmos , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676006

RESUMO

Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation attack detection (PAD) mechanism, which defines the robustness to fake or altered biometric features. Artifacts like photos, artificial fingers, face masks and fake iris contact lenses are a general security threat for all biometric modalities. The Biometric Evaluation Center of the Institute of Safety and Security Research (ISF) at the University of Applied Sciences Bonn-Rhein-Sieg has specialized in the development of a near-infrared (NIR)-based contact-less detection technology that can distinguish between human skin and most artifact materials. This technology is highly adaptable and has already been successfully integrated into fingerprint scanners, face recognition devices and hand vein scanners. In this work, we introduce a cutting-edge, miniaturized near-infrared presentation attack detection (NIR-PAD) device. It includes an innovative signal processing chain and an integrated distance measurement feature to boost both reliability and resilience. We detail the device's modular configuration and conceptual decisions, highlighting its suitability as a versatile platform for sensor fusion and seamless integration into future biometric systems. This paper elucidates the technological foundations and conceptual framework of the NIR-PAD reference platform, alongside an exploration of its potential applications and prospective enhancements.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Pele/diagnóstico por imagem , Biometria/métodos , Segurança Computacional , Reprodutibilidade dos Testes , Raios Infravermelhos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Dermatoglifia , Processamento de Sinais Assistido por Computador
3.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502576

RESUMO

Within the last few decades, the need for subject authentication has grown steadily, and biometric recognition technology has been established as a reliable alternative to passwords and tokens, offering automatic decisions. However, as unsupervised processes, biometric systems are vulnerable to presentation attacks targeting the capture devices, where presentation attack instruments (PAI) instead of bona fide characteristics are presented. Due to the capture devices being exposed to the public, any person could potentially execute such attacks. In this work, a fingerprint capture device based on thin film transistor (TFT) technology has been modified to additionally acquire the impedances of the presented fingers. Since the conductance of human skin differs from artificial PAIs, those impedance values were used to train a presentation attack detection (PAD) algorithm. Based on a dataset comprising 42 different PAI species, the results showed remarkable performance in detecting most attack presentations with an APCER = 2.89% in a user-friendly scenario specified by a BPCER = 0.2%. However, additional experiments utilising unknown attacks revealed a weakness towards particular PAI species.


Assuntos
Identificação Biométrica , Algoritmos , Biometria , Impedância Elétrica , Dedos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...