Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 12(1): 93, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834031

RESUMO

Plant growth promoting rhizobacteria (PGPR) can attenuate the adverse effects of water deficit on plant growth. Since drought stress tolerance of bacteria has earlier been associated to biofilm formation, we aimed to investigate the role of bacterial biofilm formation in their PGPR activity upon drought stress. To this end, a biofilm-forming bacterial collection was isolated from the rhizospheres of native arid grassland plants, and characterized by their drought tolerance and evaluated on their plant growth promoting properties. Most bacterial strains formed biofilm in vitro. Most isolates were drought tolerant, produced auxins, showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and solubilized mineral phosphate and potassium, but at considerably different levels. Greenhouse experiments with the most promising isolates, B1, B2 and B3, under three levels of water deficit and two wheat varieties led to an increased relative water content and increased harvest index at both moderate and severe water deficit. However, the bacteria did not affect these plant parameters upon regular watering. In addition, decreased hydrogen peroxide levels and increased glutathione S-transferase activity occurred under water deficit. Based on these results, we conclude that by improving root traits and antioxidant defensive system of wheat, arid grassland rhizospheric biofilm forming bacilli may promote plant growth under water scarcity.

2.
Front Microbiol ; 13: 824437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770171

RESUMO

Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS +) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions.

3.
Glob Chang Biol ; 28(6): 2146-2157, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984772

RESUMO

Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO2 emissions from changed soil organic matter decomposition in response to fresh C inputs-is one of the most unpredictable phenomena associated with C cycling and related nutrient mobilization. Yet, we know very little about the influence of land use on soil PE across contrasting environments. Here, we conducted a continental-scale study to (i) determine the PE induced by 13 C-glucose additions to 126 cropland and seminatural (forests and grasslands) soils from 22 European countries; (ii) compare PE magnitude in soils under various crop types (i.e., cereals, nonpermanent industrial crops, and orchards); and (iii) model the environmental factors influencing PE. On average, PEs were negative in seminatural (with values ranging between -60 and 26 µg C g-1 soil after 35 days of incubation; median = -11) and cropland (from -55 to 27 µC g-1 soil; median = -4.3) soils, meaning that microbial communities preferentially switched from soil organic C decomposition to glucose mineralization. PE was significantly less negative in croplands compared with seminatural ecosystems and not influenced by the crop type. PE was driven by soil basal respiration (reflecting microbial activity), microbial biomass C, and soil organic C, which were all higher in seminatural ecosystems compared with croplands. This cross European experimental and modeling study elucidated that PE intensity is dependent on land use and allowed to clarify the factors regulating this important C cycling process.


Assuntos
Microbiota , Solo , Biomassa , Carbono , Microbiologia do Solo
4.
Microbiol Spectr ; 9(1): e0027821, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346741

RESUMO

Computational approaches that link bacterial 16S rRNA gene amplicon data to functional genes based on prokaryotic reference genomes have emerged. This study aims to validate or refute the applicability of the functional gene prediction tools for assessment and comparison of community functionality among experimental treatments, inducing either fast or slow responses in rhizosphere microbial community composition and function. Rhizosphere samples of wheat and barley were collected in two consecutive years at active and mature growth phases from organic and conventional farming plots with ambient or future-climate treatments of the Global Change Experimental Facility. Bacterial community composition was determined by 16S rRNA gene amplicon sequencing, and the activities of five extracellular enzymes involved in carbon (ß-glucosidases, cellobiohydrolase, and xylosidase), nitrogen (N-acetylglucosaminidase), and phosphorus (acid phosphatase) cycles were determined. Structural community data were used to predict functional patterns of the rhizosphere communities using Tax4Fun and PanFP. Subsequently, the predictions were compared with the measured activities. Despite the fact that different treatments mainly drove either community composition (plant growth phase) or measured enzyme activities (farming system), the predictions mirrored patterns in the treatments in a qualitative but not quantitative way. Most of the discrepancies between measured and predicted values resulted from plant growth stages (fast community response), followed by farming management and climate (slower community response). Thus, our results suggest the applicability of the prediction tools for comparative investigations of soil community functionality in less-dynamic environmental systems. IMPORTANCE Linking soil microbial community structure to its functionality, which is important for maintaining health and services of an ecosystem, is still challenging. Besides great advances in structural community analysis, functional equivalents, such as metagenomics and metatranscriptomics, are still time and cost intensive. Recent computational approaches (Tax4Fun and PanFP) aim to predict functions from structural community data based on reference genomes. Although the usability of these tools has been confirmed with metagenomic data, a comparison between predicted and measured functions is so far missing. Thus, this study comprises an expansive reality test on the performance of these tools under different environmental conditions, including relevant global change factors (land use and climate). The work provides a valuable validation of the applicability of the prediction tools for comparison of soil community functions across different sufficiently established soil ecosystems and suggest their usability to unravel the broad spectrum of functions provided by a given community structure.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , DNA Bacteriano/genética , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Solo/química
5.
Microorganisms ; 9(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34442756

RESUMO

Climate and plant community composition (PCC) modulate the structure and function of microbial communities. In order to characterize how the functional traits of bacteria are affected, important plant growth-promoting rhizobacteria of grassland soil communities, pseudomonads, were isolated from a grassland experiment and phylogenetically and functionally characterized. The Miniplot experiment was implemented to examine the mechanisms underlying grassland ecosystem changes due to climate change, and it investigates the sole or combined impact of drought and PCC (plant species with their main distribution either in SW or NE Europe, and a mixture of these species). We observed that the proportion and phylogenetic composition of nutrient-releasing populations of the Pseudomonas community are affected by prolonged drought periods, and to a minor extent by changes in plant community composition, and that these changes underlie seasonality effects. Our data also partly showed concordance between the metabolic activities and 16S phylogeny. The drought-induced shifts in functional Pseudomonas community traits, phosphate and potassium solubilization and siderophore production did not follow a unique pattern. Whereas decreased soil moisture induced a highly active phosphate-solubilizing community, the siderophore-producing community showed the opposite response. In spite of this, no effect on potassium solubilization was detected. These results suggest that the Pseudomonas community quickly responds to drought in terms of structure and function, the direction of the functional response is trait-specific, and the extent of the response is affected by plant community composition.

6.
Environ Microbiol ; 23(10): 5866-5882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029439

RESUMO

Rhizosphere microbial communities adapt their structural and functional compositions to water scarcity and have the potential to substantially mitigate drought stress of crops. To unlock this potential, it is crucial to understand community responses to drought in the complex interplay between soil properties, agricultural management and crop species. Two winter wheat cultivars, demanding and non-demanding, were exposed to drought stress in loamy Chernozem and sandy Luvisol soils under conventional or organic farming management. Structural and functional adaptations of the rhizosphere bacteria were assessed by 16S amplicon sequencing, the predicted abundance of drought-related functional genes in the bacterial community based on 16S amplicon sequences (Tax4Fun) and the activity potentials of extracellular enzymes involved in the carbon cycle. Bacterial community composition was strongly driven by drought and soil type. Under drought conditions, Gram-positive phyla became relatively more abundant, but either less or more diverse in Luvisol and Chernozem soil respectively. Enzyme activities and functional gene abundances related to carbon degradation were increased under drought in the rhizosphere of the demanding wheat cultivar in organic farming. We demonstrate that soil type, farming system and wheat cultivar each constitute important factors during the structural and/or functional adaptation of rhizobacterial communities in response to drought.


Assuntos
Microbiota , Rizosfera , Agricultura , Secas , Microbiota/genética , Solo/química , Microbiologia do Solo , Triticum/microbiologia
7.
Environ Microbiol ; 23(10): 6163-6176, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33780112

RESUMO

Climate and agricultural practice interact to influence both crop production and soil microbes in agroecosystems. Here, we carried out a unique experiment in Central Germany to simultaneously investigate the effects of climates (ambient climate vs. future climate expected in 50-70 years), agricultural practices (conventional vs. organic farming), and their interaction on arbuscular mycorrhizal fungi (AMF) inside wheat (Triticum aestivum L.) roots. AMF communities were characterized using Illumina sequencing of 18S rRNA gene amplicons. We showed that climatic conditions and agricultural practices significantly altered total AMF community composition. Conventional farming significantly affected the AMF community and caused a decline in AMF richness. Factors shaping AMF community composition and richness at family level differed greatly among Glomeraceae, Gigasporaceae and Diversisporaceae. An interactive impact of climate and agricultural practices was detected in the community composition of Diversisporaceae. Organic farming mitigated the negative effect of future climate and promoted total AMF and Gigasporaceae richness. AMF richness was significantly linked with nutrient content of wheat grains under both agricultural practices.


Assuntos
Micorrizas , Solo , Micorrizas/genética , Agricultura Orgânica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose
8.
Microbiol Res ; 246: 126703, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33482437

RESUMO

Production and release of organic acids and phosphatase enzymes by microbes are important for inorganic and organic phosphorus cycling in soil. The presence of microorganisms with corresponding traits in the plant rhizosphere lead to improved plant P uptake and ultimately growth promotion. We studied the potential of two rhizosphere-competent strains, Pantoea sp. MR1 and Ochrobactrum sp. SSR, for solubilization of different organic and inorganic P sources in vitro. In a pot experiment we further revealed the impact of the two strains on wheat seedling performance in soil amended with either phytate, rock phosphate or K2HPO4 as solely P source. To directly link P-solubilizing activity to the strain-specific genetic potential, we designed novel primers for glucose dehydrogenase (gcd), phosphatase (pho) and phytase (phy) genes, which are related to the organic and inorganic P solubilization potential. Quantitative tracing of these functional genes in the inoculated soils of the conducted pot experiment further allowed to compare strain abundances in the soil in dependency on the present P source. We observed strain- and P source-dependent patterns of the P solubilization in vitro as well as in the pot experiment, whereby P release, particularly from phytate, was linked to the strain abundance. We further revealed that the activity of microbial phosphatases is determined by the interplay between functional gene abundance, available soil P, and substrate availability. Moreover, positive impacts of microbial seed inoculation on wheat root architecture and aboveground growth parameters were observed. Our results suggest that screening for rhizosphere-competent strains with gcd, pho and phy genes may help to identify new microbial taxa that are able to solubilize and mineralize inorganic as well as organic bound P. Subsequently, the targeted use of corresponding strains may improve P availability in agricultural soils and consequently reduce fertilizer application.


Assuntos
Ochrobactrum/genética , Pantoea/genética , Fósforo/metabolismo , Triticum/crescimento & desenvolvimento , 6-Fitase/genética , Proteínas de Bactérias/genética , Glucose 1-Desidrogenase/genética , Ochrobactrum/enzimologia , Pantoea/enzimologia , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Filogenia , Ácido Fítico/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo/química , Microbiologia do Solo , Triticum/metabolismo
9.
Front Microbiol ; 10: 3109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038552

RESUMO

Climate change models predict more frequent and prolonged drought events in Central Europe, which will exert extraordinary pressure on agroecosystems. One of the consequences is drought-related nutrient limitations for crops negatively affecting agricultural productivity. These effects can be mitigated by beneficial plant growth promoting rhizobacteria. In this study, we investigated the potential of cultivable bacterial species for phosphate solubilization in the rhizosphere of winter wheat at two relevant growth stages - stem elongation and grain filling stages. Rhizosphere samples were collected in the Global Change Experimental Facility in Central Germany, which comprises plots with conventional and organic farming systems under ambient and future climate. Phosphate-solubilizing bacteria were selectively isolated on Pikovskaya medium, phylogenetically classified by 16S rRNA sequencing, and tested for in vitro mineral phosphate solubilization and drought tolerance using plate assays. The culture isolates were dominated by members of the genera Phyllobacterium, Pseudomonas and Streptomyces. Cultivation-derived species richness and abundance of dominant taxa, especially within the genera Phyllobacterium and Pseudomonas, as well as composition of Pseudomonas species were affected by wheat growth stage. Pseudomonas was found to be more abundant at stem elongation than at grain filling, while for Phyllobacterium the opposite pattern was observed. The abundance of Streptomyces isolates remained stable throughout the studied growth stages. The temporal shifts in the cultivable fraction of the community along with considerable P solubilization potentials of Phyllobacterium and Pseudomonas species suggest functional redundancy between and among genera at different wheat growth stages. Phosphate-solubilizing Phyllobacterium species were assigned to Phyllobacterium ifriqiyense and Phyllobacterium sophorae. It is the first time that phosphate solubilization potential is described for these species. Since Phyllobacterium species showed the highest drought tolerance along all isolates, they may play an increasingly important role in phosphate solubilization in a future dryer climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...