Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 310(2): 327-50, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11428893

RESUMO

E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.


Assuntos
Pareamento de Bases , DNA Helicases/química , DNA Helicases/metabolismo , DNA/química , DNA/metabolismo , Escherichia coli , Transativadores/química , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Catálise , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Corantes Fluorescentes , Cinética , Desnaturação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Espectrometria de Fluorescência
2.
J Biol Chem ; 275(29): 22187-95, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10767290

RESUMO

Conventional kinesin is a processive, microtubule-based motor protein that drives movements of membranous organelles in neurons. Amino acid Thr(291) of Drosophila kinesin heavy chain is identical in all superfamily members and is located in alpha-helix 5 on the microtubule-binding surface of the catalytic motor domain. Substitution of methionine at Thr(291) results in complete loss of function in vivo. In vitro, the T291M mutation disrupts the ATPase cross-bridge cycle of a kinesin motor/neck construct, K401-4 (Brendza, K. M., Rose, D. J., Gilbert, S. P., and Saxton, W. M. (1999) J. Biol. Chem. 274, 31506-31514). The pre-steady-state kinetic analysis presented here shows that ATP binding is weakened significantly, and the rate of ATP hydrolysis is increased. The mutant motor also fails to distinguish ATP from ADP, suggesting that the contacts important for sensing the gamma-phosphate have been altered. The results indicate that there is a signaling defect between the motor domains of the T291M dimer. The ATPase cycles of the two motor domains appear to become kinetically uncoupled, causing them to work more independently rather than in the strict, coordinated fashion that is typical of kinesin.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Cinesinas/química , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/genética , Animais , Hidrólise , Cinesinas/genética , Cinética , Proteínas Motores Moleculares/genética , Mutação , Conformação Proteica
3.
J Biol Chem ; 274(44): 31506-14, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-10531353

RESUMO

To study the relationship between conventional kinesin's structure and function, we identified 13 lethal mutations in the Drosophila kinesin heavy chain motor domain and tested a subset for effects on mechanochemistry. S246F is a moderate mutation that occurs in loop 11 between the ATP- and microtubule-binding sites. While ATP and microtubule binding appear normal, there is a 3-fold decrease in the rate of ATP turnover. This is consistent with the hypothesis that loop 11 provides a structural link that is important for the activation of ATP turnover by microtubule binding. T291M is a severe mutation that occurs in alpha-helix 5 near the center of the microtubule-binding surface. It impairs the microtubule-kinesin interaction and directly effects the ATP-binding pocket, allowing an increase in ATP turnover in the absence of microtubules. The T291M mutation may mimic the structure of a microtubule-bound, partially activated state. E164K is a moderate mutation that occurs at the beta-sheet 5a/loop 8b junction, remote from the ATP pocket. Surprisingly, it causes both tighter ATP-binding and a 2-fold decrease in ATP turnover. We propose that E164 forms an ionic bridge with alpha-helix 5 and speculate that it helps coordinate the alternating site catalysis of dimerized kinesin heavy chain motor domains.


Assuntos
Adenosina Trifosfatases/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Drosophila , Ativação Enzimática , Genes Essenciais , Cinesinas/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Movimento , Mutação de Sentido Incorreto , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...