Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(34): eadh9570, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624889

RESUMO

Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.


Assuntos
Relógios Circadianos , Receptores para Leptina , Receptores para Leptina/genética , Hipotálamo , Núcleo Supraquiasmático , Aclimatação
2.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865258

RESUMO

Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...