Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Sci Data ; 11(1): 679, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914539

RESUMO

We present 4k video and whole transcriptome data for seven deep-sea invertebrate animals collected in the Eastern Pacific Ocean during a research expedition onboard the Schmidt Ocean Institute's R/V Falkor in August of 2021. The animals include one jellyfish (Atolla sp.), three siphonophores (Apolemia sp., Praya sp., and Halistemma sp.), one larvacean (Bathochordaeus mcnutti), one tunicate (Pyrosomatidae sp.), and one ctenophore (Lampocteis sp.). Four of the animals were sequenced with long-read RNA sequencing technology, such that the reads themselves define a reference assembly for those animals. The larvacean tissues were successfully preserved in situ and has paired long-read reference data and short read quantitative transcriptomic data for within-specimen analyses of gene expression. Additionally, for three animals we provide quantitative image data, and a 3D model for one siphonophore. The paired image and transcriptomic data can be used for species identification, species description, and reference genetic data for these deep-sea animals.


Assuntos
Invertebrados , Transcriptoma , Animais , Invertebrados/genética , Oceano Pacífico , Organismos Aquáticos/genética , Análise de Sequência de RNA
2.
Sci Adv ; 10(3): eadj4960, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232174

RESUMO

Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.


Assuntos
Robótica , Zooplâncton , Animais , Oceanos e Mares , Zooplâncton/genética , Água , Gelatina
3.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242488

RESUMO

Treatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate. This study sought to develop the next generation of small-molecule PKM2 activators, aimed specifically for delivery into the eye. Compounds were developed that replaced the thienopyrrolopyridazinone core of ML-265 and modified the aniline and methyl sulfoxide functional groups. Compound 2 demonstrated that structural changes to the ML-265 scaffold are tolerated from a potency and efficacy standpoint, allow for a similar binding mode to the target, and circumvent apoptosis in models of outer retinal stress. To overcome the low solubility and problematic functional groups of ML-265, compound 2's efficacious and versatile core structure for the incorporation of diverse functional groups was then utilized to develop novel PKM2 activators with improved solubility, lack of structural alerts, and retained potency. No other molecules are in the pharmaceutical pipeline for the metabolic reprogramming of photoreceptors. Thus, this study is the first to cultivate the next generation of novel, structurally diverse, small-molecule PKM2 activators for delivery into the eye.

4.
J Am Chem Soc ; 144(50): 22950-22964, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475666

RESUMO

The atropselective iodination of 2-amino-6-arylpyridines catalyzed by chiral disulfonimides (DSIs) is described. Key to the development of this transformation was the use of a chemoinformatically guided workflow for the curation of a structurally diverse training set of DSI catalysts. Utilization of this catalyst training set in the atropselective iodination across a variety 2-aminopyridine substrates allowed for the recommendation of statistically higher-performing DSIs for this reaction. Data Fusion techniques were implemented to successfully predict the performance of catalysts when classical linear regression analysis failed to provide suitable models. This effort identified a privileged class of 3,3'-alkynyl-DSI catalysts which were effective in catalyzing the iodination of a variety of 2-amino-6-arylpyridines with high stereoselectivity and generality. Subsequent preparative-scale demonstrations highlighted the utility of this reaction by providing iodinated pyridines >90:10 er and in good chemical yield.


Assuntos
Halogenação , Catálise
5.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930851

RESUMO

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Linfócitos T CD8-Positivos/metabolismo , Furanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacologia , Relação Estrutura-Atividade
6.
Chem Commun (Camb) ; 58(47): 6737-6740, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607950

RESUMO

Peptide macrocycles (PMCs) are increasingly popular for the development of inhibitors of protein-protein interactions (PPIs). Large libraries of PMCs are accessible using display technologies like mRNA display and phage display. These technologies require macrocyclization chemistries to be compatible with biological milieu, severely limiting the types of technologies available for cyclization. Here, we introduce the novel non-canonical amino acid (ncAA) p-cyanoacetylene-L-Phe (pCAF), which facilitates spontaneous, co-translational cyclization through Michael addition with cysteine under physiological conditions. This new, robust chemistry creates stable macrocycles of a wide variety of ring sizes including bicyclic structures.


Assuntos
Peptídeos Cíclicos , Fenilalanina , Acetileno/análogos & derivados , Ciclização , Nitrilas , Biblioteca de Peptídeos , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Fenilalanina/metabolismo
7.
J Mech Behav Biomed Mater ; 125: 104907, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736023

RESUMO

The semilunar heart valves regulate the blood flow from the ventricles to the major arteries through the opening and closing of the scallop shaped cusps. These cusps are composed of collagen fibers that act as the primary loading-bearing component. The load-dependent collagen fiber architecture has been previously examined in the existing literature; however, these studies relied on chemical clearing and tissue modifications to observe the underlying changes in response to mechanical loads. In the present study, we address this gap in knowledge by quantifying the collagen fiber orientations and alignments of the aortic and pulmonary cusps through a multi-scale, non-destructive experimental approach. This opto-mechanical approach, which combines polarized spatial frequency domain imaging and biaxial mechanical testing, provides a greater field of view (10-25mm) and faster imaging time (45-50s) than other traditional collagen imaging techniques. The birefringent response of the collagen fibers was fit with a von Mises distribution, while the biaxial mechanical testing data was implemented into a modified full structural model for further analysis. Our results showed that the semilunar heart valve cusps are more extensible in the tissue's radial direction than the circumferential direction under all the varied biaxial testing protocols, together with greater material anisotropy among the pulmonary valve cusps compared to the aortic valve cusps. The collagen fibers were shown to reorient towards the direction of the greatest applied loading and incrementally realign with the increased applied stress. The collagen fiber architecture within the aortic valve cusps were found to be more homogeneous than the pulmonary valve counterparts, reflecting the differences in the physiological environments experienced by these two semilunar heart valves. Further, the von Mises distribution fitting highlighted the presence and contribution of two distinct fiber families for each of the two semilunar heart valves. The results from this work would provide valuable insight into connecting tissue-level mechanics to the underlying collagen fiber architecture-an essential information for the future development of high-fidelity aortic/pulmonary valve computational models.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Valva Aórtica , Colágeno , Matriz Extracelular , Humanos , Suínos
8.
Acta Biomater ; 135: 425-440, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481053

RESUMO

The leaflets of the atrioventricular heart valves (AHVs) regulate the one-directional flow of blood through a coordination of the extracellular matrix components, including the collagen fibers, elastin, and glycosaminoglycans. Dysfunction of the AHVs, such as those caused by unfavorable microstructural remodeling, lead to valvular heart diseases and improper blood flow, which can ultimately cause heart failure. In order to better understand the mechanics and remodeling of the AHV leaflets and how therapeutics can inadvertently cause adverse microstructural changes, a systematic characterization of the role of each constituent in the biomechanical properties is appropriate. Previous studies have quantified the contributions of the individual microstructural components to tissue-level behavior for the semilunar valve cusps, but not for the AHV leaflets. In this study, for the first time, we quantify the relationships between microstructure and mechanics of the AHV leaflet using a three-step experimental procedure: (i) biaxial tension and stress relaxation testing of control (untreated) porcine AHV anterior leaflet specimens; (ii) enzyme treatment to remove a portion of either the collagen or elastin constituent; and (iii) biaxial tensile and stress relaxation testing of the constituent-removed (treated) specimens. We have observed that the removal of ∼100% elastin resulted in a ∼10% decrease in the tissue extensibility with biaxial tension and a ∼10% increase in the overall stress reduction with stress relaxation. In contrast, removal of 46% of the collagen content insignificantly affected tissue extensibility with biaxial tension and significantly increased stress decay (10%) with stress relaxation. These findings provide an insight into the microstructure-mechanics relationship of the AHVs and will be beneficial for future developments and refinements of microstructurally informed constitutive models for the simulation of diseased and surgically intervened AHV function. STATEMENT OF SIGNIFICANCE: This study presents, for the first time, a thorough mechanical characterization of the atrioventricular heart valve leaflets before and after enzymatic removal of elastin and collagen. We found that the biaxial tensile properties of elastin-deficient tissues and collagen-deficient are stiffer. The fact of elastin supporting low-stress valve function and collagen as the main load-bearing component was evident in a decrease in the low-tension modulus for elastin-deficient tissues and in the high-tension modulus for collagen-deficient tissues. Our quantification and experimental technique could be useful in predicting the disease-related changes in heart valve mechanics. The information obtained from this work is valuable for refining the constitutive models that describe the essential microstructure-mechanics relationship.


Assuntos
Valva Aórtica , Elastina , Animais , Fenômenos Biomecânicos , Colágeno , Estresse Mecânico , Suínos , Suporte de Carga
9.
J Biomech ; 123: 110475, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34004393

RESUMO

Collagen fibers are the primary load-bearing microstructural constituent of bodily soft tissues, and, when subjected to external loading, the collagen fibers reorient, uncrimp, and elongate. Specific to the atrioventricular heart valve leaflets, the collagen fiber kinematics form the basis of many constitutive models; however, some researchers claim that modeling the affine fiber kinematics (AFK) are sufficient for accurately predicting the macroscopic tissue deformations, while others state that modeling the non-affine kinematics (i.e., fiber uncrimping together with elastic elongation) is required. Experimental verification of the AFK theory has been previously performed for the mitral valve leaflets in the left-side heart; however, this same evaluation has yet to be performed for the morphologically distinct tricuspid valve (TV) leaflets in the right-side heart. In this work, we, for the first time, evaluated the AFK theory for the TV leaflets using an integrated biaxial testing-polarized spatial frequency domain imaging device to experimentally quantify the load-dependent collagen fiber reorientations for comparison to the AFK theory predictions. We found that the AFK theory generally underpredicted the fiber reorientations by 3.1°, on average, under the applied equibiaxial loading with greater disparity when the tissue was subjected to the applied non-equibiaxial loading. Furthermore, increased AFK errors were observed with increasing collagen fiber reorientations (Pearson coefficient r = -0.36, equibiaxial loading), suggesting the AFK theory is better suited for relatively smaller reorientations. Our findings suggest the AFK theory may require modification for more accurate predictions of the collagen fiber kinematics in the TV leaflets, which will be useful in refining modeling efforts for more accurate TV simulations.


Assuntos
Valva Mitral , Valva Tricúspide , Animais , Fenômenos Biomecânicos , Matriz Extracelular , Estresse Mecânico , Suínos , Valva Tricúspide/diagnóstico por imagem
10.
Sensors (Basel) ; 21(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916575

RESUMO

Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 µm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication.

11.
J Org Chem ; 86(4): 3490-3534, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33539091

RESUMO

A general procedure for the asymmetric synthesis of highly substituted 1,2-amino alcohols in high yield and diastereoselectivity is described that uses organometallic additions of a wide range of nucleophiles to tert-butylsulfinimines as the key step. The addition of organolithium reagents to these imines follows a modified Davis model. The diastereoselectivity for this reaction depends significantly on both the nucleophile and electrophile. These highly substituted 1,2-amino alcohols are used to synthesize stereochemically diverse and structurally novel, polysubstituted 2,2'-methylene(bisoxazoline) ligands in high yields.


Assuntos
Amino Álcoois , Iminas , Indicadores e Reagentes , Ligantes , Estereoisomerismo
12.
J Am Chem Soc ; 142(26): 11578-11592, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568531

RESUMO

Modern, enantioselective catalyst development is driven largely by empiricism. Although this approach has fostered the introduction of most of the existing synthetic methods, it is inherently limited by the skill, creativity, and chemical intuition of the practitioner. Herein, we present a complementary approach to catalyst optimization in which statistical methods are used at each stage to streamline development. To construct the optimization informatics workflow, a number of critical components had to be subjected to rigorous validation. First, the critically important molecular descriptors were validated in two case studies to establish the importance of conformation-dependent molecular representations. Next, with a large data set available, it was possible to investigate the amount of data necessary to make predictive models with different modeling methods. Given the commercial availability of many catalyst structures, it was possible to compare models generated with algorithmically selected training sets and commercially available training sets. Finally, the augmentation of limited data sets is demonstrated in a method informed by unsupervised learning to restore the accuracy of the generated models.

13.
J Aircr ; 55(3): 1141-1153, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31534269

RESUMO

The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for Computational Fluid Dynamics (CFD) analyses. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown, and improvements between subsequent BLI designs are presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet, with Reynolds number of 40 million based on mean aerodynamic chord and an angle of attack of 2° for all geometries. Results indicate an 8% reduction in engine power requirements at cruise for the BLI configuration compared to the baseline geometry. Small geometric alterations of the aft portion of the fuselage using CDISC has been shown to marginally increase the benefit from boundary-layer ingestion further, resulting in an 8.7% reduction in power requirements for cruise, as well as a drag reduction of approximately twelve counts over the baseline geometry.

14.
PLoS One ; 14(8): e0219852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412054

RESUMO

Schooling fishes, like flocking birds and swarming insects, display remarkable behavioral coordination. While over 25% of fish species exhibit schooling behavior, nighttime schooling has rarely been observed or reported. This is due to vision being the primary modality for schooling, which is corroborated by the fact that most fish schools disperse at critically low light levels. Here we report on a large aggregation of the bioluminescent flashlight fish Anomalops katoptron that exhibited nighttime schooling behavior during multiple moon phases, including the new moon. Data were recorded with a suite of low-light imaging devices, including a high-speed, high-resolution scientific complementary metal-oxide-semiconductor (sCMOS) camera. Image analysis revealed nighttime schooling using synchronized bioluminescent flashing displays, and demonstrated that school motion synchrony exhibits correlation with relative swim speed. A computer model of flashlight fish schooling behavior shows that only a small percentage of individuals need to exhibit bioluminescence in order for school cohesion to be maintained. Flashlight fish schooling is unique among fishes, in that bioluminescence enables schooling in conditions of no ambient light. In addition, some members can still partake in the school while not actively exhibiting their bioluminescence. Image analysis of our field data and model demonstrate that if a small percentage of fish become motivated to change direction, the rest of the school follows. The use of bioluminescence by flashlight fish to enable schooling in shallow water adds an additional ecological application to bioluminescence and suggests that schooling behavior in mesopelagic bioluminescent fishes may be also mediated by luminescent displays.


Assuntos
Comportamento Animal/fisiologia , Peixes/fisiologia , Luminescência , Comportamento Social , Natação , Animais , Simulação por Computador , Peixes/anatomia & histologia , Modelos Biológicos
15.
Sci Total Environ ; 687: 1245-1260, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412459

RESUMO

Hydropower generation has advantages for societies that seek low-carbon, renewable energy alternatives, but sustainable hydropower production will require an explicit consideration of potential tradeoffs between socioeconomic and environmental priorities. These tradeoffs are often explored during a formal environmental impact assessment process that can be complex and controversial. The steps taken to address stakeholder concerns through impact hypotheses and field studies are not always transparent. We have created a Checklist of River Function Indicators to facilitate stakeholder discussions during hydropower licensing and to support more transparent, holistic, and scientifically informed hydropower environmental analyses. Based on a database of environmental metrics collected from hydropower project studies documented by the Federal Energy Regulatory Commission (FERC), the International Hydropower Association, the Low Impact Hydropower Institute, and peer-reviewed scientific literature, our proposed Checklist of River Function Indicators contains 51 indicators in six categories. We have tested the usefulness of the Indicators by applying them to seven hydropower projects documented by FERC. Among the case study projects, 44 of the 51 Indicators were assessed according to the FERC documentation. Even though each hydropower project presents unique natural resource issues and stakeholder priorities, the proposed Indicators can provide a transparent starting point for stakeholder discussions about which ecological impacts should be considered in hydropower planning and relicensing assessments.

16.
Science ; 363(6424)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30655414

RESUMO

Catalyst design in asymmetric reaction development has traditionally been driven by empiricism, wherein experimentalists attempt to qualitatively recognize structural patterns to improve selectivity. Machine learning algorithms and chemoinformatics can potentially accelerate this process by recognizing otherwise inscrutable patterns in large datasets. Herein we report a computationally guided workflow for chiral catalyst selection using chemoinformatics at every stage of development. Robust molecular descriptors that are agnostic to the catalyst scaffold allow for selection of a universal training set on the basis of steric and electronic properties. This set can be used to train machine learning methods to make highly accurate predictive models over a broad range of selectivity space. Using support vector machines and deep feed-forward neural networks, we demonstrate accurate predictive modeling in the chiral phosphoric acid-catalyzed thiol addition to N-acylimines.

17.
Sci Rep ; 8(1): 14779, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283051

RESUMO

Modern marine biologists seeking to study or interact with deep-sea organisms are confronted with few options beyond industrial robotic arms, claws, and suction samplers. This limits biological interactions to a subset of "rugged" and mostly immotile fauna. As the deep sea is one of the most biologically diverse and least studied ecosystems on the planet, there is much room for innovation in facilitating delicate interactions with a multitude of organisms. The biodiversity and physiology of shallow marine systems, such as coral reefs, are common study targets due to the easier nature of access; SCUBA diving allows for in situ delicate human interactions. Beyond the range of technical SCUBA (~150 m), the ability to achieve the same level of human dexterity using robotic systems becomes critically important. The deep ocean is navigated primarily by manned submersibles or remotely operated vehicles, which currently offer few options for delicate manipulation. Here we present results in developing a soft robotic manipulator for deep-sea biological sampling. This low-power glove-controlled soft robot was designed with the future marine biologist in mind, where science can be conducted at a comparable or better means than via a human diver and at depths well beyond the limits of SCUBA. The technology relies on compliant materials that are matched with the soft and fragile nature of marine organisms, and uses seawater as the working fluid. Actuators are driven by a custom proportional-control hydraulic engine that requires less than 50 W of electrical power, making it suitable for battery-powered operation. A wearable glove master allows for intuitive control of the arm. The manipulator system has been successfully operated in depths exceeding 2300 m (3500 psi) and has been field-tested onboard a manned submersible and unmanned remotely operated vehicles. The design, development, testing, and field trials of the soft manipulator is placed in context with existing systems and we offer suggestions for future work based on these findings.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Biologia Marinha/instrumentação , Robótica/instrumentação , Biodiversidade , Recifes de Corais , Humanos , Água do Mar
18.
PLoS One ; 13(8): e0200386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067780

RESUMO

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding "fingernails", and re-fabrication of soft manipulators at sea. These were then used to successfully grasp fragile deep-sea animals, such as goniasterids and holothurians, which have historically been difficult to collect undamaged via rigid mechanical arms and suction samplers. As scientific expeditions to remote parts of the world are costly and lengthy to plan, on-the-fly soft robot actuator printing offers a real-time solution to better understand and interact with delicate deep-sea environments, soft-bodied, brittle, and otherwise fragile organisms. This also offers a less invasive means of interacting with slow-growing deep marine organisms, some of which can be up to 18,000 years old.


Assuntos
Organismos Aquáticos , Desenho de Equipamento , Robótica , Oceanos e Mares , Impressão Tridimensional
19.
Sci Rep ; 8(1): 7009, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725025

RESUMO

Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.


Assuntos
Antraz/prevenção & controle , Vacinas Bacterianas/imunologia , Portadores de Fármacos , Vetores Genéticos , Peste/prevenção & controle , Tularemia/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Bacillus anthracis/genética , Bacillus anthracis/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Francisella tularensis/genética , Francisella tularensis/imunologia , Listeria monocytogenes/genética , Camundongos , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Yersinia pestis/genética , Yersinia pestis/imunologia
20.
Soft Robot ; 5(4): 399-409, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29672216

RESUMO

This article presents the development of modular soft robotic wrist joint mechanisms for delicate and precise manipulation in the harsh deep-sea environment. The wrist consists of a rotary module and bending module, which can be combined with other actuators as part of a complete manipulator system. These mechanisms are part of a suite of soft robotic actuators being developed for deep-sea manipulation via submersibles and remotely operated vehicles, and are designed to be powered hydraulically with seawater. The wrist joint mechanisms can also be activated with pneumatic pressure for terrestrial-based applications, such as automated assembly and robotic locomotion. Here we report the development and characterization of a suite of rotary and bending modules by varying fiber number and silicone hardness. Performance of the complete soft robotic wrist is demonstrated in normal atmospheric conditions using both pneumatic and hydraulic pressures for actuation and under high ambient hydrostatic pressures equivalent to those found at least 2300 m deep in the ocean. This rugged modular wrist holds the potential to be utilized at full ocean depths (>10,000 m) and is a step forward in the development of jointed underwater soft robotic arms.


Assuntos
Robótica/instrumentação , Desenho de Equipamento , Humanos , Oceanos e Mares , Articulação do Punho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...