Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984489

RESUMO

Single atoms of uranium supported on molybdenum sulfide surfaces (U@MoS2) have been recently demonstrated to facilitate the hydrogen evolution reaction (HER) through electrocatalysis. Theoretical calculations have predicted uranium hydroxide moieties bound to edge-sulfur atoms of MoS2 as a proposed transition state involved in the HER process. However, the isolation of relevant intermediates involved in this process remains a challenge, rendering mechanistic hypotheses unverified. The present work describes the isolation and characterization of a uranium-hydroxide intermediate on molybdenum sulfide surfaces using [(Cp*3Mo3S4)UCp*], a molecular model of a reduced uranium center supported at MoS2. Mechanistic investigations highlight the metalloligand cooperativity with uranium involved in the water activation pathway. The corresponding uranium-oxo analogue, [(Cp*3Mo3S4)Cp*U(═O)], was also accessed from the hydroxide cluster via hydrogen atom transfer and from [(Cp*3Mo3S4)UCp*] through an alternative direct oxygen atom transfer. These results provide an atomistic perspective on the reactivity of low-valent uranium at molybdenum sulfide surfaces toward water, modeling key intermediates associated with the HER of U@MoS2 catalysts.

2.
Chem Sci ; 15(28): 11072-11083, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027268

RESUMO

The synthesis and characterization of a series of (TBA)2[M{Mo5O13(OMe)4NO}2] (M = Zr, Hf, Th, and U) sandwich complexes is reported. A preformed lacunary, Lindqvist-type, polyoxomolybdate-alkoxide cluster provides access to first examples of actinide-polyoxomolybdate sandwich complexes isolated under non-aqueous conditions. Incorporation of metal(iv) cations into this framework was found to "switch on" reversible redox chemistry at the {Mo5} ligands, with the Zr and Hf containing complexes accepting up to two electrons, while the Th and U derivates accommodate as many as four additional electrons. The enhancement of the redox properties of the cluster upon actinide incorporation is an exciting observation, presenting actinide "doping" as a novel approach for accessing functional redox-active materials. Oxidation of the uranium containing sandwich complex (TBA)2[U{Mo5O13(OMe)4NO}2], chemically or electrochemically, allows access to the U(v) centered species, which was characterized both spectroscopically and by single crystal X-ray diffraction. This represents the first example of a U(v)-polyoxometalate sandwich complex to be isolated and structurally characterized.

3.
Angew Chem Int Ed Engl ; : e202405113, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864588

RESUMO

The catalytic relevance of Fe(IV) species in non-heme iron catalysis has motivated synthetic advances in well-defined five- and six-coordinate Fe(IV) complexes for a better understanding of their fundamental electronic structures and reactivities. Herein, we report the syntheses of FeDipp2 and FeMes2, a pair of unusual four-coordinate non-heme formally Fe(IV) complexes with S = 1 ground states supported by strongly donating bisamide ligands. By combining spectroscopic characterization and computational modeling, we found that small variations in ligand aryl substituents resulted in substantial changes in both structures and bonding. This work highlights the strong donor capabilities and modularity of the bisamide ligand set. More broadly, it is a critical contribution to the utilization of ligand design to modulate molecular geometries and electronic structures of low-coordinate, high-valent iron complexes.

4.
Dalton Trans ; 53(20): 8550-8554, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38715455

RESUMO

We have synthesised and characterised the complex Ni(tpy)2 (tpy = 2,2':6',2''-terpyridine). This formally Ni(0) complex is paramagnetic both in the solid state and in solution (S = 2). The crystal structure shows an octahedral geometry, with molecules arranged in independent dimers involving π-stacking between pairs of complexes. Magnetic measurementes and DFT calculations suggest the existence of temperature-dependent intermolecular antiferromagnetic coupling in the solid state.

5.
Chem Sci ; 15(16): 5964-5972, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665542

RESUMO

Perfluorocompound (PFC) gases play vital roles in microelectronics processing. Requirements for ultra-high purities traditionally necessitate use of virgin sources and thereby hinder the capture, purification, and reuse of these costly gases. Most importantly, gaseous PFCs are incredibly potent greenhouse gases with atmospheric lifetimes on the order of 103-104 years, and thus any environmental emissions have an outsized and prolonged impact on our climate. The development of sorbents that can capture PFC gases from industrial waste streams has lagged substantially behind the progress made over the last decade in capturing CO2 from both point emission sources and directly from air. Herein, we show that the metal-organic framework Zn(fba) (fba2- = 4,4'-(hexafluoroisopropylidene)bis-benzoate) displays an equilibrium selectivity for CF4 adsorption over N2 that surpasses those of all water-stable sorbents that have been reported for this separation. Selective adsorption of both CHF3 and CH4 over N2 is also evident, demonstrating a general preference for tetrahedral C1 gases. This selectivity is enabled by adsorption within narrow corrugated channels lined with ligand-based aryl rings, a site within this material that has not previously been realized as being accessible to guests. Analyses of adsorption kinetics and X-ray diffraction data are used to characterize sorption and diffusion of small adsorbates within these channels and strongly implicate rotation of the linker aryl rings as a gate that modulates transport of the C1 gases through a crystallite. Multi-component breakthrough measurements demonstrate that Zn(fba) is able to resolve mixtures of CF4 and N2 under flow-through conditions. Taken together, this work illuminates the dynamic structure of Zn(fba), and also points toward general design principles that can enable large CF4 selectivities in sorbents with more favorable kinetic profiles.

6.
Chemistry ; 30(32): e202400764, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574277

RESUMO

Redox mediators are attractive solutions for addressing the stringent kinetic stipulations required for efficient energy conversion processes. In this work, we compare the electrochemical properties of four vanadium complexes, namely [V(acac)3], [V6O7(OMe)12], [nBu4N]3[V6O13(TRISNO2)2], and [nBu4N]5[V18O46(NO3)] in non-aqueous solutions on glassy carbon electrodes. The goal of this study is to investigate the electron transfer kinetics and diffusivity of these compounds under identical experimental conditions to develop an understanding of structure-function relationships that dictate the physicochemical properties of vanadium oxide assemblies. Complex selection was dictated by two criteria - (1) nuclearity of the transition metal complexes (2) distribution of electron density in the native electronic configuration. Our analyses establish that electronic communication between metal centers significantly impacts charge transfer kinetics of these vanadium-based compounds.

7.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 318-324, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456051

RESUMO

The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hy-droxy-pyridin-2-one in tetra-hydro-furan (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tol-yl2Si(OPO)2 (2) and mesit-yl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tol-yl2SiCl2 and mesit-yl2SiCl2, respectively, in aceto-nitrile. The oxygen-bonded carbon and nitro-gen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution.

8.
Inorg Chem ; 63(21): 9610-9623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377955

RESUMO

A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, the U(IV) species are nonemissive.

9.
J Am Chem Soc ; 146(4): 2364-2369, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241170

RESUMO

The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.

10.
Chem Commun (Camb) ; 60(5): 530-533, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38053465

RESUMO

The preparation of an actinide substituted cubane cluster, (Cp*3Mo3S4)Cp*UI2, and its reduced derivatives are reported. Structural and spectroscopic investigations provide insight into the unique interactions between the actinide and its redox-active molybdenum sulphide metalloligand, serving as a model to study atomically-dispersed, low-valent actinide ions on MoS2 surfaces. To probe the ability of the assembly to facilitate multielectron small molecule activation, the reactivity of the fully-reduced cluster, (Cp*3Mo3S4)Cp*U, with azobenzene was investigated. Addition of the substrate results in the formation of a cis-bis-imido cluster, (Cp*3Mo3S4)Cp*U(NPh)2. Cooperative reactivity between the actinide and redox-active support facilitates the 4e--reduction of substrate.

11.
Inorg Chem ; 63(1): 451-461, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38113512

RESUMO

With the mounting need for clean and renewable energy, catalysts for hydrogen production based on earth abundant elements are of great interest. Herein, we describe the synthesis, characterization, and catalytic activity of two nickel complexes based on the pyridinediimine ligand that possess basic nitrogen moieties of pyridine and imidazole that could potentially serve as pendent bases to enhance catalysis. Although these ligands have previously been reported to be complexed to some metal ions, they have not been applied to nickel. The nickel complex with the pendent pyridines was found to be the most active of the two, catalyzing proton reduction electrochemically with an overpotential of 490 mV. The appearance of a wave that preceded the Ni(I/0) redox couple in the presence of protons suggests that protonation of a dissociated pyridine was likely. Further evidence of this was provided with density functional theory calculations, and a mechanism of hydrogen production is proposed. Furthermore, in a light-driven system containing Ru(bpy)32+ and ascorbic acid, TON of 1400 were obtained.

12.
Dalton Trans ; 53(1): 93-104, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38038996

RESUMO

Non-aqueous redox flow batteries constitute a promising solution for grid-scale energy storage due to the ability to achieve larger cell voltages than can be readily accessed in water. However, their widespread application is limited by low solubility of the electroactive species in organic solvents. In this work, we demonstrate that organic functionalization of titanium-substituted polyoxovanadate-alkoxide clusters increases the solubility of these assemblies over that of their homoleptic congeners by a factor of >10 in acetonitrile. Cyclic voltammetry, chronoamperometry, and charge-discharge cycling experiments are reported, assessing the electrochemical properties of these clusters relevant to their ability to serve as multielectron charge carriers for energy storage. The kinetic implications of ligand variation are assessed, demonstrating the role of ligand structure on the diffusivity and heterogeneous rates of electron transfer in mixed-metal charge carriers. Our results offer new insights into the impact of structural modifications on the physicochemical properties of these assemblies.

13.
Nano Lett ; 23(22): 10221-10227, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935022

RESUMO

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the ex situ functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.

14.
Chem Commun (Camb) ; 59(90): 13450-13453, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37877264

RESUMO

Herein, we describe nickel-catalyzed nitrile hydroboration with pinacolborane, wherein a tethered NHC-pyridonate ligand enables efficient catalysis (5 mol% [Ni], ≤6 h reaction time) at room temperature. Mechanistic studies, including isolation of the catalytically relevant intermediates, shed light on the cooperative role of the ligand in activating both reagents simultaneously.

15.
Acta Crystallogr C Struct Chem ; 79(Pt 11): 456-463, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787071

RESUMO

Reactions of (tricyclohexylphosphane)copper(I) chloride with two equivalents of potassium anthracene (KAn) in tetrahydrofuran (THF) at 200 K provides air-sensitive but thermally stable (at 293 K) solutions from which yellow crystalline blocks of bis[bis(tetrahydrofuran-κO)potassium] bis(µ-anthracene-κ2C9:C10)dicopper, [K(THF)2]2[{Cu(9,10-η2-C14H10)}2] or [K(C4H8O)2]2[Cu2(C14H10)2], 1, were isolated in about 50% yield. Single-crystal X-ray crystallographic analysis of 1 confirmed the presence of the first known (arene)cuprate. Also, unlike all previously known homoleptic (anthracene)metallates of d-block elements, which contain metals coordinated only to terminal rings, the organocuprate unit in 1 contains copper bound to the 9,10-carbons of the central ring of anthracene. No other d- or f-block metal is known to afford an anthracene or other aromatic hydrocarbon complex having the architecture of organodicuprate 1.

16.
Inorg Chem ; 62(38): 15616-15626, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37712579

RESUMO

We present the post-synthetic modification of a polyoxovanadate-alkoxide (POV-alkoxide) cluster via the reactivity of its cationic form, [V6O7(OCH3)12]1+, with water. This result indicates that cluster oxidation increases the lability of bridging methoxide ligands, affording a ligand exchange reaction that serves to compensate for the increased charge of the cluster core. This synthetic advance affords the isolation of a series of POV-alkoxide clusters with varying degrees of µ2-O2- ligands incorporated at the surface, namely, [V6O8(OCH3)11], [V6O9(OCH3)10], and [V6O10(OCH3)9]. Characterization of the POV-alkoxide clusters is described; changes in the infrared and electronic absorption spectra are consistent with the oxidation of the cluster core. We also examine the consequences of ligand substitution on the redox properties of the series of POV-alkoxide clusters via cyclic voltammetry; decreased alkoxide ligand density translates to a cathodic shift of analogous redox events. Ligand substitution also increases comproportionation constants of the Lindqvist core, indicating electron exchange between vanadium centers is promoted in structures with greater numbers of µ2-O2- ligands.

17.
JACS Au ; 3(9): 2451-2457, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772178

RESUMO

Carboxylic acid derivatives are appealing alternatives to organohalides as cross-coupling electrophiles for fine chemical synthesis due to their prevalence in biomass and bioactive small molecules as well as their ease of preparation and handling. Within this family, carboxamides comprise a versatile electrophile class for nickel-catalyzed coupling with carbon and heteroatom nucleophiles. However, even state-of-the-art C(acyl)-N functionalization and cross-coupling reactions typically require high catalyst loadings and specific substitution patterns. These challenges have proven difficult to overcome, in large part due to limited experimental mechanistic insight. In this work, we describe a detailed mechanistic case study of acylative coupling reactions catalyzed by the commonly employed Ni/SIPr catalyst system (SIPr = 1,3-bis(2,6-di-isopropylphenyl)-4,5-dihydroimidazol-2-ylidine). Stoichiometric organometallic studies, in situ spectroscopic measurements, and crossover experiments demonstrate the accessibility of Ni(0), Ni(I), and Ni(II) resting states. Although in situ precatalyst activation limits reaction efficiency, the low concentrations of active, SIPr-supported Ni(0) select for electrophile-first (closed-shell) over competing nucleophile-first (open-shell) mechanistic manifolds. We anticipate that the experimental insights into the nature and controlling features of these distinct pathways will accelerate rational improvements to cross-coupling methodologies involving pervasive carboxamide substrate motifs.

18.
Organometallics ; 42(14): 1810-1817, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502313

RESUMO

Iron-catalyzed amino-oxygenation of olefins often uses discrete ligands to increase reactivity and broaden substrate scope. This work is focused on examining ligand effects on reactivity and in situ iron speciation in a system which utilizes a bisoxazoline ligand. Freeze-trapped 57Fe Mössbauer and EPR spectroscopies as well as SC-XRD experiments were utilized to isolate and identify the species formed during the catalytic reaction of amino-oxygenation of olefins with functionalized hydroxylamines, as well as in the precatalytic mixture of iron salt and ligand. Experiments revealed significant influence of ligand and solvent on the speciation in the precatalytic mixture which led to the formation of different species which had significant influence on the reactivity. In situ experiments showed no evidence for the formation of an Fe(IV)-nitrene intermediate, and the isolation of a reactive intermediate was unsuccessful, suggesting that the use of the PyBOX ligand led to the formation of more reactive intermediates than observed in the previously studied system, preventing direct detection of intermediate species. However, isolation of the seven coordinate Fe(III) species with three carboxylate units of the hydroxylamine and spin-trap EPR experiments suggest formation of a species with unpaired electron density on the hydroxylamine nitrogen, which is in accordance with formation of a potential iron iminyl radical species, as recently proposed in literature. An observed increase in yield when substrates devoid of C-H bonds as well as isolation of a ring-closed dead-end species with substrates containing these bonds suggests the identity of the functionalized hydroxylamine can dictate the reactivity observed in these reactions.

19.
ACS Catal ; 13(13): 8987-8996, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441237

RESUMO

Iron-bisphosphines have attracted broad interest as highly effective and versatile catalytic systems for two- and three-component cross-coupling strategies. While recent mechanistic studies have defined the role of organoiron(II)-bisphosphine species as key intermediates for selective cross-coupled product formation in these systems, mechanistic features that are essential for catalytic performance remain undefined. Specifically, key questions include the following: what is the generality of iron(II) intermediates for radical initiation in cross-couplings? What factors control reactivity toward homocoupled biaryl side-products in these systems? Finally, what are the solvent effects in these reactions that enable high catalytic performance? Herein, we address these key questions by examining the mechanism of enantioselective coupling between α-chloro- and α-bromoalkanoates and aryl Grignard reagents catalyzed by chiral bisphosphine-iron complexes. By employing freeze-trapped 57Fe Mössbauer and EPR studies combined with inorganic synthesis, X-ray crystallography, reactivity studies, and quantum mechanical calculations, we define the key in situ iron speciation as well as their catalytic roles. In contrast to iron-SciOPP aryl-alkyl couplings, where monophenylated species were found to be the predominant reactive intermediate or prior proposals of reduced iron species to initiate catalysis, the enantioselective system utilizes an iron(II)-(R,R)-BenzP* bisphenylated intermediate to initiate the catalytic cycle. A profound consequence of this radical initiation process is that halogen abstraction and subsequent reductive elimination result in considerable amounts of biphenyl side products, limiting the efficiency of this method. Overall, this study offers key insights into the broader role of iron(II)-bisphosphine species for radical initiation, factors contributing to biphenyl side product generation, and protocol effects (solvent, Grignard reagent addition rate) that are critical to minimizing biphenyl generation to obtain more selective cross-coupling methods.

20.
Inorg Chem ; 62(30): 11920-11931, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462947

RESUMO

Both natural enzymatic systems and synthetic porous material catalysts utilize well-defined and uniform channels to dictate reaction selectivities on the basis of size or shape. Mimicry of this design element in homogeneous systems is generally difficult owing to the flexibility inherent in most small molecular species. Herein, we report the synthesis of a tripodal ligand scaffold that orients a narrow and rigid cavity atop accessible metal coordination space. The permanent void is formed through a macrocyclization reaction whereby the 3,5-dihydroxyphenyl arms are covalently linked through methylene bridges. Deprotonative metallation leads to anionic and coordinatively unsaturated complexes of divalent cobalt, nickel, and zinc. An analogous series of trigonal monopyramidal complexes bearing a nonmacrocyclized variant of the tripodal ligand are also reported. Physical characterization of the coordination complexes has been carried out using multiple spectroscopic techniques (NMR, EPR, and UV-vis), cyclic voltammetry, and X-ray diffraction. Complexes of the macrocyclized [LOCH2O]3- ligand retain a rigid cavity upon metallation, with this cavity guarding the entrance to the open axial coordination site. Through a combination of spectroscopic and computational studies, it is shown that acetonitrile entry into the void is sterically precluded, disrupting anticipated coordination at the intracavity site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...