Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507206

RESUMO

Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.


Assuntos
Cromatografia , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Substâncias Macromoleculares/química
2.
J Synchrotron Radiat ; 30(Pt 1): 258-266, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601945

RESUMO

As part of its Extremely Brilliant Source (EBS) upgrade project, the ESRF's BM29 BioSAXS beamline was subject to a significant upgrade and refurbishment. In addition to the replacement of the beamline's original bending magnet source by a two-pole wiggler, leading to an increase in brilliance by a factor of 60, the sample environment of the beamline was almost completely refurbished: a vacuum-compatible Pilatus3 X 2M with a sensitive area of 253.7 mm × 288 mm and frame rates up to 250 Hz was installed, increasing the active area available and thus the q-scaling of scattering images taken; the sample changer was replaced with an upgraded version, allowing more space for customizable sample environments and the installation of two new sample exposure units; the software associated with the beamline was also renewed. In addition, the layout and functionality of the BSXCuBE3 (BioSAXS Customized Beamline Environment) data acquisition software was redesigned, providing an intuitive `user first' approach for inexperienced users, while at the same time maintaining more powerful options for experienced users and beamline staff. Additional features of BSXCuBE3 are queuing of samples; either consecutive sample changer and/or SEC-SAXS (size-exclusion chromatography small-angle X-ray scattering) experiments, including column equilibration were also implemented. Automatic data processing and analysis are now managed via Dahu, an online server with upstream data reduction, data scaling and azimuthal integration built around PyFAI (Python Fast Azimuthal Integration), and data analysis performed using the open source FreeSAS. The results of this automated data analysis pipeline are displayed in ISPyB/ExiSAXS. The upgraded BM29 has been in operation since the post-EBS restart in September 2020, and here a full description of its new hardware and software characteristics together with examples of data obtained are provided.


Assuntos
Robótica , Síncrotrons , Humanos , Difração de Raios X , Espalhamento a Baixo Ângulo , Software , Coleta de Dados
3.
J Synchrotron Radiat ; 29(Pt 5): 1318-1328, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073892

RESUMO

The second phase of the ESRF upgrade program did not only provide a new storage ring (Extremely Brilliant Source, EBS) but also allowed several beamlines to be refurbished. The BioSAXS beamline (located on port BM29) was upgraded with a new wiggler source and a larger detector. All analysis software has been rewritten to cope with the increased data flux and continues to provide beamline users with reduced and pre-processed data in real time. This article describes FreeSAS, an open-source collection of various small-angle scattering analysis algorithms needed to reduce and analyze BioSAXS data, and Dahu, the tool used to interface data analysis with beamline control. It further presents the data-processing pipelines for the different data acquisitions modes of the beamline, using either a sample changer for individual homogeneous samples or an inline size-exclusion chromatography setup.


Assuntos
Análise de Dados , Síncrotrons , Cromatografia em Gel , Espalhamento a Baixo Ângulo , Software
4.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1386-1400, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726167

RESUMO

Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.


Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halobacteriaceae/química , Rodopsinas Sensoriais/química , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Sci Rep ; 11(1): 10774, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031444

RESUMO

Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.

6.
Structure ; 29(9): 1065-1073.e4, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33974880

RESUMO

Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355130

RESUMO

Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.


Assuntos
Membranas Mitocondriais , Chaperonas Moleculares , Humanos , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/química , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Biophys J ; 118(3): 676-687, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952810

RESUMO

Prions are pathological isoforms of the cellular prion protein that is responsible for transmissible spongiform encephalopathies (TSE). Cellular prion protein interacts with copper, Cu(II), through octarepeat and nonoctarepeat (non-OR) binding sites. The molecular details of Cu(II) coordination within the non-OR region are not well characterized yet. By the means of small angle x-ray scattering and x-ray absorption spectroscopic methods, we have investigated the effect of Cu(II) on prion protein folding and its coordination geometries when bound to the non-OR region of recombinant prion proteins (recPrP) from mammalian species considered resistant or susceptible to TSE. As the prion resistant model, we used ovine recPrP (OvPrP) carrying the protective polymorphism at residues A136, R154, and R171, whereas as TSE-susceptible models, we employed OvPrP with V136, R154, and Q171 polymorphism and bank vole recPrP. Our analysis reveals that Cu(II) affects the structural plasticity of the non-OR region, leading to a more compacted conformation. We then identified two Cu(II) coordination geometries: in the type 1 coordination observed in OvPrP at residues A136, R154, and R171, the metal is coordinated by four residues; conversely, the type 2 coordination is present in OvPrP with V136, R154, and Q171 and bank vole recPrP, where Cu(II) is coordinated by three residues and by one water molecule, making the non-OR region more exposed to the solvent. These changes in copper coordination affect the recPrP amyloid aggregation. This study may provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.


Assuntos
Príons , Amiloide , Animais , Sítios de Ligação , Cobre , Proteínas Priônicas/genética , Ovinos
9.
Structure ; 27(8): 1246-1257.e5, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178222

RESUMO

TRPML2 is the least structurally characterized mammalian transient receptor potential mucolipin ion channel. The TRPML family hallmark is a large extracytosolic/lumenal domain (ELD) between transmembrane helices S1 and S2. We present crystal structures of the tetrameric human TRPML2 ELD at pH 6.5 (2.0 Å) and 4.5 (2.95 Å), corresponding to the pH values in recycling endosomes and lysosomes. Isothermal titration calorimetry shows Ca2+ binding to the highly acidic central pre-pore loop which is abrogated at low pH, in line with a pH-dependent channel regulation model. Small angle X-ray scattering confirms the ELD dimensions in solution. Changes in pH or Ca2+ concentration do not affect the protein's secondary structure, but can influence ELD oligomer integrity according to native mass spectrometry. Our data thus complete the set of high-resolution views of human TRPML channel ELDs and reveal some structural responses to the conditions the TRPML2 ELD encounters as the channel traffics through the endolysosomal system.


Assuntos
Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
10.
ChemSusChem ; 12(15): 3642-3653, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31081279

RESUMO

Twelve new quaternary ammonium sophorolipids with long alkyl chains on the nitrogen atom were synthesized starting from oleic and petroselinic acid-based sophorolipids. These novel derivatives were evaluated for their antimicrobial activity against selected Gram-negative and Gram-positive bacteria and their transfection efficacies on three different eukaryotic cell lines in vitro as good activities were demonstrated for previously synthesized derivatives. Self-assembly properties were also evaluated. All compounds proved to possess antimicrobial and transfection properties, and trends could be observed based on the length of the nitrogen substituent and the total length of the sophorolipid tail. Moreover, all long-chain quaternary ammonium sophorolipids form micelles, which proved to be a prerequisite to induce antimicrobial activity and transfection capacity. These results are promising for future healthcare applications of long-chained quaternary ammonium sophorolipids.


Assuntos
Anti-Infecciosos/química , Lipídeos/química , Compostos de Amônio Quaternário/química , Transfecção , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Micelas , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário/farmacologia , Relação Estrutura-Atividade
11.
J Phys Chem B ; 123(17): 3841-3858, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31002250

RESUMO

Conventional head-chain but also more exotic divalent, Gemini, or bolaform amphiphiles have in common well-defined hydrophilic and hydrophobic blocks with often a predictable self-assembly behavior. However, new categories of amphiphiles, such as microbial biosurfactants, challenge such conventional understanding because of the poorly defined boundaries between the hydrophilic and hydrophobic portions. Microbial glycolipids, such as sophorolipids, rhamnolipids, or cellobioselipids, interesting biodegradable, nontoxic, alternatives to synthetic surfactants, all represent interesting examples of atypical amphiphiles with partially predictable self-assembly properties. However, their limited molecular diversity strongly limits their application potential. For this reason, we used them as ready-made platform to prepare a whole class of new derivatives. In particular, a broad range of amino derivatives of sophorolipid biosurfactant was recently prepared with the goal of producing biobased antimicrobial and transfection agents, of which the efficiency strongly depends on their molecular structure and unpredictable self-assembly behavior. The new compounds contain a set of asymmetrical and symmetrical bolaamphiphiles, the latter with three or four hydrophilic centers, divalent amphiphiles with asymmetric polar headgroups and even Y-shaped amphiphiles, bearing two sophorose groups connected to one nitrogen atom. In this contribution, we employ small-angle X-ray scattering to establish a relationship between their peculiar molecular structures and the self-assembly properties in water. We find that all divalent and Y-shaped compounds form micelles, of which the hydrophilic shell is composed of a bulky sophorose-C x( x = 8,11)-amine moiety, with aggregation numbers between 30 and 100. On the contrary, most symmetrical and asymmetrical bolaamphiphiles display poor self-assembly properties, generally showing aggregation numbers below 20, especially in the presence of either short spacers or large spacers containing hydrophilic centers.


Assuntos
Ácidos Oleicos/química , Tensoativos/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ácidos Oleicos/síntese química , Tensoativos/síntese química
12.
Soft Matter ; 15(9): 1999-2008, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30719518

RESUMO

Vimentin intermediate filaments constitute a distinct filament system in mesenchymal cells that is instrumental for cellular mechanics and migration. In vitro, the rod-like monomers assemble in a multi-step, salt-dependent manner into micrometer long biopolymers. To disclose the underlying mechanisms further, we employed small angle X-ray scattering on two recombinant vimentin variants, whose assembly departs at strategic points from the normal assembly route: (i) vimentin with a tyrosine to leucine change at position 117; (ii) vimentin missing the non-α-helical carboxyl-terminal domain. Y117L vimentin assembles into unit-length filaments (ULFs) only, whereas ΔT vimentin assembles into filaments containing a higher number of tetramers per cross section than normal vimentin filaments. We show that the shape and inner structure of these mutant filaments is significantly altered. ULFs assembled from Y117L vimentin contain more, less tightly bundled vimentin tetramers, and ΔT vimentin filaments preserve the number density despite the higher number of tetramers per filament cross-section.


Assuntos
Filamentos Intermediários/metabolismo , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Vimentina/química , Vimentina/genética , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Angew Chem Int Ed Engl ; 58(11): 3640-3644, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30605929

RESUMO

Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, protein-protein, and inhibitor-protein interactions stabilize the dimer. The behavior of this efficient antitrypanosomal molecule thus constitutes an exquisite example of chemically induced dimerization with a small, monovalent ligand that can be exploited for future drug design.


Assuntos
Antiprotozoários/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Oxirredutases/química , Tiorredoxinas/química , Trypanosoma brucei brucei/enzimologia , Animais , Antiprotozoários/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Glutationa/análogos & derivados , Glutationa/química , Humanos , Peróxido de Hidrogênio/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Espermidina/análogos & derivados , Espermidina/química , Trypanosoma/metabolismo , Trypanosoma/parasitologia
14.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445040

RESUMO

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
15.
Soft Matter ; 14(38): 7859-7872, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30211424

RESUMO

A bio-based glycolipid bolaamphiphile (glyco-bolaamphiphile) has recently been produced (Van Renterghem et al., Biotechnol. Bioeng., 2018, 115, 1195-1206) on a gram scale by using the genetically-engineered S. bombicola strain Δat Δsble Δfao1. The glyco-bolaamphiphile bears two symmetrical sophorose headgroups at the extremities of a C16:0 (ω-1 hydroxylated palmitic alcohol) spacer. Its atypical structure has been obtained by redesigning the S. bombicola strain Δat Δsble, producing non-symmetrical glyco-bolaamphiphile, with an additional knock out (Δfao1) and feeding this new strain with fatty alcohols. The molecular structure of the glyco-bolaamphiphile is obtained by feeding the new strain a saturated C16 substrate (palmitic alcohol), which enables the biosynthesis of bolaform glycolipids. In this work, we show that the bio-based glyco-bolaamphiphile readily forms a hydrogel in water at room temperature, and that the hydrogel formation depends on the formation of self-assembled fibers. Above 28 °C, the molecules undergo a gel-to-sol transition, which is due to a fiber-to-micelle phase change. We provide a quantitative description of the Self-Assembled Fibrillar Network (SAFiN) hydrogel formed by the glyco-bolaampiphile. We identify the sol-gel transition temperature, the gelling time, and the minimal gel concentration; additionally, we explore the fibrillation mechanism as a function of time and temperature and determine the activation energy of the micelle-to-fiber phase transition. These parameters allow control of the elastic properties of the glyco-bolaamphiphile hydrogel: at 3 wt% and 25 °C, the elastic modulus G' is above the kPa range, while at 5 °C, G' can be tuned between 100 Pa and 20 kPa, by controlling the undercooling protocol.

16.
J Synchrotron Radiat ; 25(Pt 4): 1113-1122, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979172

RESUMO

Radiation damage by intense X-ray beams at modern synchrotron facilities is one of the major complications for biological small-angle X-ray scattering (SAXS) investigations of macromolecules in solution. To limit the damage, samples are typically measured under a laminar flow through a cell (typically a capillary) such that fresh solution is continuously exposed to the beam during measurement. The diameter of the capillary that optimizes the scattering-to-absorption ratio at a given X-ray wavelength can be calculated a priori based on fundamental physical properties. However, these well established scattering and absorption principles do not take into account the radiation susceptibility of the sample or the often very limited amounts of precious biological material available for an experiment. Here it is shown that, for biological solution SAXS, capillaries with smaller diameters than those calculated from simple scattering/absorption criteria allow for a better utilization of the available volumes of radiation-sensitive samples. This is demonstrated by comparing two capillary diameters di (di = 1.7 mm, close to optimal for 10 keV; and di = 0.9 mm, which is nominally sub-optimal) applied to study different protein solutions at various flow rates. The use of the smaller capillaries ultimately allows one to collect higher-quality SAXS data from the limited amounts of purified biological macromolecules.


Assuntos
Substâncias Macromoleculares/química , Espalhamento a Baixo Ângulo , Difração de Raios X/instrumentação , Proteínas/química , Soluções , Síncrotrons
17.
Biophys J ; 114(8): 1908-1920, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694868

RESUMO

We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca2+ or Mg2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering.


Assuntos
Fusão de Membrana , Espalhamento a Baixo Ângulo , Lipossomas Unilamelares/química , Difração de Raios X , Adesividade , Modelos Moleculares , Lipossomas Unilamelares/metabolismo
18.
J Biol Chem ; 293(22): 8379-8393, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632076

RESUMO

Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death.


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/farmacologia , Tuberculose/tratamento farmacológico , Arginina/farmacologia , Morte Celular , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transporte de Íons , Compostos Organofosforados/farmacologia , Fosforilação , Conformação Proteica , Domínios Proteicos , Tuberculose/metabolismo , Tuberculose/microbiologia
19.
Nat Commun ; 9(1): 1025, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523789

RESUMO

Asymmetric cell divisions balance stem cell proliferation and differentiation to sustain tissue morphogenesis and homeostasis. During asymmetric divisions, fate determinants and niche contacts segregate unequally between daughters, but little is known on how this is achieved mechanistically. In Drosophila neuroblasts and murine mammary stem cells, the association of the spindle orientation protein LGN with the stem cell adaptor Inscuteable has been connected to asymmetry. Here we report the crystal structure of Drosophila LGN in complex with the asymmetric domain of Inscuteable, which reveals a tetrameric arrangement of intertwined molecules. We show that Insc:LGN tetramers constitute stable cores of Par3-Insc-LGN-GαiGDP complexes, which cannot be dissociated by NuMA. In mammary stem cells, the asymmetric domain of Insc bound to LGN:GαiGDP suffices to drive asymmetric fate, and reverts aberrant symmetric divisions induced by p53 loss. We suggest a novel role for the Insc-bound pool of LGN acting independently of microtubule motors to promote asymmetric fate specification.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Divisão Celular Assimétrica , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Células-Tronco/química , Células-Tronco/metabolismo
20.
Biochim Biophys Acta Biomembr ; 1860(2): 566-578, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29106973

RESUMO

SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Micelas , Proteínas SNARE/química , Algoritmos , Animais , Modelos Químicos , Modelos Moleculares , Ratos , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...