Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(3): e4915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358250

RESUMO

Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects a majority of the world population. It may cause severe disease in immunocompromised people and lead to pregnancy loss or grave disabilities of the fetus upon congenital infection. For effective replication and lifelong persistence in its host, HCMV relies on diverse functions of its tegument protein UL82, also known as pp71. Up to now, little is known about the molecular mechanisms underlying the multiple functions of this crucial viral protein. Here, we describe the X-ray structure of full-length UL82 to a resolution of 2.7 Å. A single polypeptide chain of 559 amino acids mainly folds into three ß-barrels. We show that UL82 forms a dimer in the crystal as well as in solution. We identify point mutations that disturb the dimerization interface and show that the mutant protein is monomeric in solution and upon expression in human cells. On the basis of the three-dimensional structure, we identify structural homologs of UL82 from other herpesviruses and analyze whether their functions are preserved in UL82. We demonstrate that UL82, despite its structural homology to viral deoxyuridinetriphosphatases (dUTPases), does not possess dUTPase activity. Prompted by the structural homology of UL82 to the ORF10 protein of murine herpesvirus 68 (MHV68), which is known to interact with the RNA export factor ribonucleic acid export 1 (Rae1), we performed coimmunoprecipitations and demonstrated that UL82 indeed interacts with Rae1. This suggests that HCMV UL82 may play a role in mRNA export from the nucleus similar to ORF10 encoded by the gammaherpesviruses MHV68.


Assuntos
Citomegalovirus , Proteínas Virais , Animais , Camundongos , Humanos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Linhagem Celular , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Front Immunol ; 14: 1149822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283747

RESUMO

Dysregulated NLRP3 inflammasome activation drives a wide variety of diseases, while endogenous inhibition of this pathway is poorly characterised. The serum protein C4b-binding protein (C4BP) is a well-established inhibitor of complement with emerging functions as an endogenously expressed inhibitor of the NLRP3 inflammasome signalling pathway. Here, we identified that C4BP purified from human plasma is an inhibitor of crystalline- (monosodium urate, MSU) and particulate-induced (silica) NLRP3 inflammasome activation. Using a C4BP mutant panel, we identified that C4BP bound these particles via specific protein domains located on the C4BP α-chain. Plasma-purified C4BP was internalised into MSU- or silica-stimulated human primary macrophages, and inhibited MSU- or silica-induced inflammasome complex assembly and IL-1ß cytokine secretion. While internalised C4BP in MSU or silica-stimulated human macrophages was in close proximity to the inflammasome adaptor protein ASC, C4BP had no direct effect on ASC polymerisation in in vitro assays. C4BP was also protective against MSU- and silica-induced lysosomal membrane damage. We further provide evidence for an anti-inflammatory function for C4BP in vivo, as C4bp-/- mice showed an elevated pro-inflammatory state following intraperitoneal delivery of MSU. Therefore, internalised C4BP is an inhibitor of crystal- or particle-induced inflammasome responses in human primary macrophages, while murine C4BP protects against an enhanced inflammatory state in vivo. Our data suggests C4BP has important functions in retaining tissue homeostasis in both human and mice as an endogenous serum inhibitor of particulate-stimulated inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Proteína de Ligação ao Complemento C4b/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/farmacologia
3.
Biotechniques ; 70(6): 350-354, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114503

RESUMO

Multicomponent protein complexes called inflammasomes play a major role in the innate immune system by activating proinflammatory cytokines and promoting a highly inflammatory form of programmed cell death, called pyroptosis. A hallmark of the function of the nucleotide-binding domain, leucine-rich repeat and NLRP3-mediated inflammasome assembly is the polymerization of ASC into large filaments. The ASC filaments recruit and activate procaspase-1 by induced proximity. We developed an in vitro assay for monitoring the polymerization of the pyrin domain of ASC by microscale thermophoresis. We have validated the assay by analyzing the effects of buffer conditions, mutations of ASC and the use of seeds on the polymerization behavior of ASC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Proteína 3 que Contém Domínio de Pirina da Família NLR , Domínio Pirina , Apoptose , Inflamassomos , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...