Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(6): 8902-8913, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820331

RESUMO

In this study, we have developed a simultaneous grating spectroscopy using a broadband IR laser source capable of detecting moving targets in real time. The broadband IR laser source operated in pulsed mode provides a broad spectral range, which covers absorption bands of many chemical analytes. The laser operating conditions were optimized to cover the broadest wavelength range spanning spectral features for the analytes of interest, based on a detailed understanding of the broadband source. This measured the signal from two samples, a 1% acetaminophen KBr pellet sample and toluene in a gas cell. These samples were characterized by illuminating them with the IR broadband source and collecting the transmitted or reflected signal through a grating spectrometer and onto an IR focal plane array (FPA). The results clearly show discrete peaks comparable to the FTIR reference spectra and the spectral features of the samples were successfully discriminated. We believe that the proof of concepts presented here are of broad applicability and will aid advanced real-time standoff detection research.

2.
J Chromatogr A ; 1610: 460555, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561971

RESUMO

Many different designs of microfabricated gas chromatography columns have recently been proposed and demonstrated. These designs either incorporate a stationary phase directly into the device which limits the versatility of the column as a separator, or require coating, which presents its own problems with determining the proper conditions for each different stationary phase a user may need. Here, we present a new approach: Uniformly spin coating a flat surface with the stationary phase and creating a column by pressing a lid, with micro-fabricated ridges, down onto the coated substrate. The lids are molded using commercially available epoxies so that when pressed onto a flat surface they create an airtight seal. The epoxy material is rendered inert by a thin layer of gold. We describe the fabrication and initial results from a standard, OV-1, stationary phase as proof of concept.


Assuntos
Cromatografia Gasosa/métodos , Elastômeros/química , Microtecnologia/métodos , Acetona/química , Alcanos/química
3.
Opt Express ; 27(22): 32609-32620, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684469

RESUMO

We report the time resolved characterization of Fabry-Perot quantum cascade lasers (FP-QCLs). We are developing a custom-built broadband laser source in the Mid-LWIR range by combining several high power FP-QCLs for a single snap shot application. This white light source would enable not only stand-off detection applications in a single snapshot but also new data collection modalities such as live, real-time chemical imaging, requiring extremely rapid measurements. In this study, the two FP-QCLs were operated in CW and pulsed modes with varying applied currents and diode temperatures to optimize the best laser operation condition to cover a broad spectral range including spectral features for the analytes of interest. To understand mode behavior of the FP-QCLs in a short period of time, the spectral output for each test condition was temporally resolved. Under most of the conditions, FP mode hopping was observed during the time evolution through the pulse length (3000 ns). Based on the time-resolved spectra, the ideal spectral characteristics for a single snap shot application are discussed, with respect to a broad spectral bandwidth, a flat-top power profile, and high spectral power density.

4.
Opt Express ; 27(6): 8011-8020, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052626

RESUMO

We experimentally demonstrate speckle noise reduction and beam wander mitigation by using a rotating diamond/KBr pellet and a multimode fiber (MMF). As the diamond/KBr diffuser is rotated, the reflected speckle images that are captured by an infrared camera are temporally averaged. We demonstrate 78% speckle noise reduction by averaging 25 frames, which is within 80% of the theoretical contrast reduction. Large beam position fluctuations are also significantly suppressed by adding the MMF. This combination of beam wander mitigation and speckle reduction offers significant benefits for emerging optical technologies that use quantum cascade lasers as illumination sources.

5.
J Am Chem Soc ; 134(41): 17046-52, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22917192

RESUMO

A century ago Ostwald described the "Rule of Stages" after deducing that crystal formation must occur through a series of intermediate crystallographic phases prior to formation of the final thermodynamically stable structure. Direct evidence of the Rule of Stages is lacking, and the theory has not been implemented to allow isolation of a selected structural phase. Here we report the role of Ostwald's Rule of Stages in the growth of CdSe quantum dots (QDs) from molecular precursors in the presence of hexadecylamine. It is observed that, by controlling the rate of growth through the reaction stoichiometry and therefore the probability of ion-packing errors in the growing QD, the initially formed zinc blende (ZB) critical nuclei representing the kinetic phase can be maintained at sizes >14 nm in diameter without phase transformation to the thermodynamic wurtzite (WZ) structure. An intermediate pseudo-ZB structure is observed to appear at intermediate reaction conditions, as predicted by Ostwald. The ZB and pseudo-ZB structures convert to the WZ lattice above a critical melting temperature. This study validates Ostwald's Rule of Stages and provides a phase diagram for growth of CdSe QDs exhibiting a specific crystallographic motif.

6.
J Am Chem Soc ; 133(39): 15475-86, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21863840

RESUMO

Eu(III)-doped Y(2)O(3) nanocrystals are prepared by microwave synthetic methods as spherical 6.4 ± 1.5 nm nanocrystals with a cubic crystal structure. The surface of the nanocrystal is passivated by acetylacetonate (acac) and HDA on the Y exposed facet of the nanocrystal. The presence of acac on the nanocrystal surface gives rise to a strong S(0) → S(1) (π → π*, acac) and acac → Ln(3+) ligand to metal charge transfer (LMCT) transitions at 270 and 370 nm, respectively, in the Eu:Y(2)O(3) nanocrystal. Excitation into the S(0) → S(1) (π → π*) or acac → Ln(3+) LMCT transition leads to the production of white light emission arising from efficient intramolecular energy transfer to the Y(2)O(3) oxygen vacancies and the Eu(III) Judd-Ofelt f-f transitions. The acac passivant is thermally stable below 400 °C, and its presence is evidenced by UV-vis absorption, FT-IR, and NMR measurements. The presence of the low-lying acac levels allows UV LED pumping of the solid phosphor, leading to high quantum efficiency (∼19%) when pumped at 370 nm, high-quality white light color rendering (CIE coordinates 0.33 and 0.35), a high scotopic-to-photopic ratio (S/P = 2.21), and thermal stability. In a LED lighting package luminosities of 100 lm W(-1) were obtained, which are competitive with current commercial lighting technology. The use of the passivant to funnel energy to the lanthanide emitter via a molecular antenna effect represents a new paradigm for designing phosphors for LED-pumped white light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...