Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33325-33335, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885042

RESUMO

The development of multidimensional structured electrode materials with simple synthetic methods and their electrochemical sensing ability against environmental pollution is still a challenge. In this article, we propose a hybrid formed using multidimensional (3D/2D) vanadium diselenide microspheres and tungsten diselenide nanosheets (VSe2/WSe2) for the electrochemical detection of 5-nitroquinoline (5-NQ), a highly toxic and hazardous substance that is polluting aquatic life due to increasing industrial activities. The 3D/2D VSe2/WSe2 hybrids were prepared by a simple solvothermal method and their morphological and structural analysis was confirmed by various spectroscopy and analytical techniques such as powder X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The proposed 3D/2D architecture showed a strong synergistic effect between the two components as well as high electrical conductivity. As a result, an increased peak current for the reduction and detection of 5-NQ was achieved compared to other modified and unmodified disposable screen-printed electrodes (SPE), such as bare SPE, VSe2/SPE, and WSe2/SPE. Under the optimized electrochemical conditions, VSe2/WSe2/SPE showed large linear response ranges (0.012-1053, 1183-3474 µM), a low detection limit (0.002 µM), good sensitivity along with good selectivity, and repeatability for the detection of 5-NQ. With this prominent electrochemical behavior, the VSe2/WSe2 electrode has clear potential to produce high-performance sensor devices.

2.
ACS Appl Mater Interfaces ; 16(22): 29374-29389, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781311

RESUMO

In this work, new strategies were developed to prepare 1D-V2MoO8 (VMO) rods from 2D V-doped MoSe2 nanosheets (VMoSe2) with good control over morphology and crystallinity by a facile hydrothermal and calcination process. The morphological changes from 2D to 1D rods were controlled by changing the calcination temperature from 300 to 600 °C. The elimination of Se and the incorporation of O into the V-Mo structure were evaluated by TGA, p-XRD, Raman, FE-SEM, EDAX, FE-TEM, and XPS analyses. These results prove that the optimization of the physical parameters leads to changes in the crystal phase and textural properties of the prepared material. The VMoSe2 and its calcined products were investigated as electrochemical sensors for the detection of the antibacterial drug nitrofurantoin (NFT). At a calcination temperature of 500 °C, the modified screen-printed carbon electrodes (SPCE) proved to be an excellent electrochemical sensor for the detection of NFT in neutral media. Under the optimized conditions, VMO-500 °C/SPCE exhibits low detection limit (LOD) (0.015 µM), wide linear ranges (0.1-31, 47-1802 µM), good sensitivity, and selectivity. The proposed sensor was successfully used for the analysis of NFT in real samples with good recovery results. Moreover, the reduction potential of NFT agreed well with the theoretical analysis using quantum chemical calculations, with the B3LYP with 6-31G(d,p) basis set predicting an E0 value of -0.45 V. The interaction between the electrode surface and NFT via the LUMO diagram and the electrostatic potential surface is also discussed.

3.
Talanta ; 275: 126132, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669959

RESUMO

Given the levels of pollution in the aquatic environment and the development of antimicrobial resistance, it is essential to develop sensors, with sensitivity, selectivity, stability, and cost-effectiveness, for the determination of antibiotics. The present article highlights the fabrication of an ultra-sensitive graphene and copper sensor, Gr/Cu, supported on glassy carbon (GCE/Gr/Cu) for the electroanalysis of levofloxacin through a cost-effective electrodeposition method. The sequential electrodeposition of graphene and Cu was optimised to give GCE/Gr/Cu, with the Cu particles well dispersed on the graphene sheets. The composite exhibited very good conducting properties as evidenced from electrochemical impedance studies. Using cyclic voltammetry, an impressive sensitivity of 19.7 µA µM-1 cm-2 was achieved with a detection limit of 11.86 nM, providing a promising electrocatalytic material for the determination of this antibiotic. Moreover, good selectivity was observed in the presence of various ions typically found in water and other drug molecules, while very good stability exceeding a 21-day period was achieved, and recovery values between 97.7 and 103.8 % were obtained in tap water.

4.
Environ Res ; 248: 118391, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309562

RESUMO

Sulfonamides are a family of synthetic drugs with a broad-spectrum of antimicrobial activity. Like other antimicrobials, they have been found in aquatic environments, making their detection important. Herein, an electrochemical sensor was designed using tannic acid exfoliated few-layered MoS2 sheets, which were combined with a mixture of reduced graphene oxide (rGO) and graphite flakes (G). The rGO/G was formed using electrodeposition, by cycling from -0.5 to -1.5 V in an acidified sulfate solution with well dispersed GO and G. The exfoliated MoS2 sheets were drop cast over the wrinkled rGO/G surface to form the final sensor, GCE/rGO/G/ta-MoS2. The mixture of rGO/G was superior to pure rGO in formulating the sensor. The fabricated sensor exhibited an extended linear range from 0.1 to 566 µM, with a LOD of 86 nM, with good selectivity in the presence of various salts found in water and structurally related drugs from the sulfonamide family. The sensor showed very good reproducibility with the RSD at 0.48 %, repeatability and acceptable long term stability over a 10-day period. Good recovery from both tap and river water was achieved, with recovery ranging from 90.4 to 98.9 % for tap water and from 83.5 to 94.4 % for real river water samples.


Assuntos
Grafite , Nanocompostos , Polifenóis , Molibdênio , Técnicas Eletroquímicas , Reprodutibilidade dos Testes , Sulfanilamida , Água
5.
Talanta ; 251: 123758, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940113

RESUMO

Metronidazole is a well-known antimicrobial drug that belongs to the nitroimidazole family of antibiotics. It has been widely used in the treatment of infections, but its accumulation in aquatic environments is an emerging concern. In this study a glassy carbon electrode was modified with graphene (Gr) nanoplatelets and bismuth. Both the Gr and Bi were electrochemically deposited onto the glassy carbon and the modified electrode was employed in the electrochemical detection of metronidazole. At the modified electrode, the reduction of metronidazole was found to be an adsorption-controlled reaction. The optimised sensor, which was fabricated within 6 min, exhibited good selectivity in the presence of various inorganic and organic compounds, good recovery in tap water, and exhibited a linear calibration curve extending from 0.005 to 260 µM, with a limit of detection of 0.9 nM. The sensor was easily regenerated through the simple oxidation of the Bi deposit followed by a 100 s reduction period in the Bi(III) solution to give a newly generated surface. Good reproducibility was achieved using this simple regeneration approach.


Assuntos
Anti-Infecciosos , Grafite , Antibacterianos , Bismuto , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Galvanoplastia , Grafite/química , Metronidazol , Regeneração , Reprodutibilidade dos Testes , Água
6.
Materials (Basel) ; 14(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34772226

RESUMO

In this study, we synthesized heterostructured zinc stannate/tin oxide microparticles (ZTO/TO MPs) by a simple coprecipitation method and used them as an effective electrode material for the electrochemical detection of the antibacterial drug secnidazole (SCZ). The as-prepared ZTO/TO MPs were characterized by XRD, Raman, FE-SEM, HR-TEM, EDX, and XPS analyses. The physiochemical studies clearly proved that the fabricated ZTO/TO MPs were formed in a heterostructure phase without other impurities. A glassy carbon electrode modified with the synthesized ZTO/TO MPs showed an excellent and improved electrocatalytic activity in the electrochemical reduction of SCZ. Using differential pulse voltammetry (DPV), an impressive linear calibration range, extending from 0.01 to 193 µM, was observed, coupled with a detection limit of 0.0054 µM and a sensitivity of 0.055 µA/µM. In addition, the ZTO/TO MPs/GCE showed very good selectivity for the detection of SCZ in the presence of a number of biological, inorganic, and structurally related compounds. Finally, the ZTO/TO MPs/GCE was investigated for the analysis of SCZ in human blood serum samples. A very good recovery was obtained when spiking the blood serum with SCZ, highlighting the good applicability of the ZTO/TO MPs/GCE for the electrochemical analysis of SCZ in complex biological samples.

7.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209007

RESUMO

Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.

8.
Materials (Basel) ; 14(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800708

RESUMO

Supramolecular chemistry, although focused mainly on noncovalent intermolecular and intramolecular interactions, which are considerably weaker than covalent interactions, can be employed to fabricate sensors with a remarkable affinity for a target analyte. In this review the development of cyclodextrin-based electrochemical sensors is described and discussed. Following a short introduction to the general properties of cyclodextrins and their ability to form inclusion complexes, the cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and electropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents and biosensors and in the electrochemical detection of environmental contaminants, biomolecules and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed, it is clear that cyclodextrins are promising molecular recognition agents in the creation of electrochemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including the development of more robust methods for the integration of cyclodextrins into the sensing unit.

9.
Inorg Chem ; 60(4): 2464-2476, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534999

RESUMO

Apart from perovskites, the development of different types of pyrochlore oxides is highly focused on various electrochemical applications in recent times. Based on this, we have synthesized pyrochlore-type praseodymium stannate nanoparticles (Pr2Sn2O7 NPs) by using a coprecipitation method and further investigated by different analytical and spectroscopic techniques such as X-ray diffraction, Raman spectroscopy, field emission-scanning electron microscopy, high resolution-transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Followed by this, we have designed a unique and novel electrochemical sensor for nitrofurazone detection, by modifying the glassy carbon electrode (GCE) with the prepared Pr2Sn2O7 NPs. For that, the electrochemical experiments were performed by using cyclic voltammetry and differential pulse voltammetry techniques. The Pr2Sn2O7 NPs modified GCE exhibits high sensitivity (2.11 µA µM-1 cm-2), selectivity, dynamic linear ranges (0.01-24 µM and 32-332 µM), and lower detection limit (4 nM). Furthermore, the Pr2Sn2O7 NPs demonstrated promising real sample analysis with good recovery results in biological samples (human urine and blood serum) which showed better results than the noble metal catalysts. Based on these results, the present work gives clear evidence that the pyrochlore oxides are highly suitable electrode materials for performing outstanding catalytic activity toward electrochemical sensors.


Assuntos
Anti-Infecciosos/administração & dosagem , Nanopartículas/química , Nióbio/química , Nitrofurazona/análise , Praseodímio/química , Compostos de Estanho/química , Catálise , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica
10.
Molecules ; 26(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498661

RESUMO

The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.


Assuntos
Quitosana/química , Poluentes Químicos da Água/química , Água/química , Adsorção , Quitina/química , Grafite/química , Humanos , Metais Pesados/química , Dióxido de Silício/química , Purificação da Água/métodos
11.
Materials (Basel) ; 13(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422892

RESUMO

In recent years, graphene-based materials have been identified as an emerging and promising new material in electro-Fenton, with the potential to form highly efficient metal-free catalysts that can be employed in the removal of contaminants from water, conserving precious water resources. In this review, the recent applications of graphene-based materials in electro-Fenton are described and discussed. Initially, homogenous and heterogenous electro-Fenton methods are briefly introduced, highlighting the importance of the generation of H2O2 from the two-electron reduction of dissolved oxygen and its catalysed decomposition to produce reactive and oxidising hydroxy radicals. Next, the promising applications of graphene-based electrodes in promoting this two-electron oxygen reduction reaction are considered and this is followed by an account of the various graphene-based materials that have been used successfully to give highly efficient graphene-based cathodes in electro-Fenton. In particular, graphene-based composites that have been combined with other carbonaceous materials, doped with nitrogen, formed as highly porous aerogels, three-dimensional materials and porous gas diffusion electrodes, used as supports for iron oxides and functionalised with ferrocene and employed in the more effective heterogeneous electro-Fenton, are all reviewed. It is perfectly clear that graphene-based materials have the potential to degrade and mineralise dyes, pharmaceutical compounds, antibiotics, phenolic compounds and show tremendous potential in electro-Fenton and other advanced oxidation processes.

12.
Materials (Basel) ; 12(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416225

RESUMO

Protective polypyrrole films doped with dodecylbenzene sulfonate (DBS) were formed at copper, while carbon nanotubes (CNT) were incorporated within the polymer films with the DBS to give PPy-DBSCNT (polypyrrole films doped with DBS and incorporated CNT). The polymer films were deposited from a 0.05 M DBS solution at a pH of 6.0 at a thin polypyrrole film doped with tartrate, which served as a stable pre-layer. Low corrosion currents of 0.12 and 0.05 µA cm-2 were estimated using Tafel analysis for the PPy-DBS and PPy-DBSCNT films, respectively, while a significant reduction in the concentration of Cu2+ ions from the corroding copper was observed for the polymer-modified copper. The corrosion protection properties were attributed to the doping of the polymer by the large and immobile DBS anions and possibly, by the larger anionic micelles that are formed at a DBS concentration of 9.8 mM in the pyrrole-containing solution. These dopants give a negatively charged surface that repels chloride anions. The additional protective properties afforded by the CNTs appear to be related to the morphology of the CNT-modified polypyrrole coatings, while the functionalized CNTs also provide a negatively charged surface.

13.
J Hazard Mater ; 374: 152-158, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30999138

RESUMO

Two stainless steel anodes, AISI 420 and AISI 310, and pure iron were compared in an electrocoagulation study for the simultaneous removal of phosphates, Orange II and Zinc ions from a synthetic wastewater at a current density of 11.7 mA cm-2 and a surface area to volume ratio of 19.4 m-1. High removal efficiencies were observed with AISI 420 and pure iron, reaching values between 88% and 99%, while significantly lower values, approximately 30%, were obtained with AISI 310. The AISI 310 performed well in the removal of Zn2+ due to its removal as Zn(OH)2. The variations in the performance of the steel anodes were attributed to the lower chromium content of the AISI 420, which gives less passive behaviour. This was supported using polarisation data, where a 10-fold increase in the corrosion current was obtained for AISI 420 compared to AISI 310. Furthermore, Cr(VI) was observed in the solution phase when AISI 310 was employed as the anode, illustrating the importance of the alloying concentrations. While rust particles were seen during the non-continuous use of the iron anode, they were not observed with the AISI 420 anode.

14.
J Hazard Mater ; 366: 39-45, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30502571

RESUMO

The simultaneous removal of phosphates, Zn2+ and Orange II, in two synthetic wastewaters was achieved using Al-Mg and Al-Zn-In alloys as anodes at 11.7 mA cm-2 and a surface area to volume ratio of 19.0 m-1. Higher removal efficiencies were obtained with Al-Zn-In, attaining values of 95-96% for phosphate, 99% for Zn2+ and 88-96% for Orange II, while somewhat lower values were seen with Al-Mg, with 89-93% for phosphate, 96% for Zn2+ and 50-60% for Orange II, depending on the solution. The higher efficiency with Al-Zn-In was attributed to its less passive behaviour, which was evident from polarisation plots. Numerous shallow pits, resembling general-like dissolution, were seen with Al-Zn-In, while fewer and larger pits were observed with Al-Mg. The energy demand for the removal of the pollutants was computed as 1.30 and 2.55 kWh m-3 for the Al-Zn-In and Al-Mg anodes, respectively. The removal of phosphates and Orange II was explained in terms of the generation of cationic polynuclear aluminium species that provide electrostatic interactions with the anionic phosphates and Orange II. The removal of Zn2+ was attributed to the formation of insoluble Zn(OH)2.

15.
J Nanosci Nanotechnol ; 12(1): 338-49, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22523984

RESUMO

Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Pirróis/química , Zinco/química , Dendrímeros/química , Taninos Hidrolisáveis , Teste de Materiais , Oxirredução , Tamanho da Partícula , Sulfatos/química , Propriedades de Superfície
16.
Environ Sci Technol ; 38(17): 4671-6, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15461178

RESUMO

Hexavalent chromium [Cr(VI)] is highly toxic, carcinogenic, and mutagenic to living organisms. In this paper, the reduction of Cr(VI) to the much less toxic trivalent state [Cr(III)] was studied at polyaniline films grown to different thickness. Much higher rates of Cr(VI) reduction were observed for the "thick" polyaniline films. This was explained in terms of the morphology of the polymer and the higher surface area of polymer in contact with the Cr(VI) solution. For "thin" polyaniline films, the Cr(VI) reduction reaction was found to obey pseudo-first-order kinetics for the duration of exposure. However, in the case of thick polyaniline layers, the Cr(VI) reduction reaction followed a two-stage process, with each stage obeying pseudo-first-order kinetics. This was explained in terms of oxidation of the polymer from the leucoemeraldine to the emeraldine state and then further oxidation of the polymer from the emeraldine to the pernigraniline state. Much higher rates of Cr(VI) reduction were observed on oxidation of the polymer from the leucoemeraldine to the emeraldine state.


Assuntos
Compostos de Anilina/química , Cromo/química , Eliminação de Resíduos/métodos , Compostos de Anilina/síntese química , Cromo/análise , Poluentes Ambientais/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...