Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 314: 115010, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447444

RESUMO

Anthropogenic microparticles (e.g., microplastics) are present in sewage plants, especially in sludge streams. However, the lack of standardized protocols to scrutinize the presence of anthropogenic microparticles in sludge makes the comparison between studies unfeasible. To tackle the knowledge gap regarding the efficiency of methodologies on the extraction of anthropogenic microparticles from the complex organic matrix, dewatered sludge, and digested sludge was treated with peroxidation and density separation, and the recovery of microparticles from these samples was investigated. The results showed that with the use of a higher density solution (NaI, 1.5 g/cm3) a much better recovery of anthropogenic microparticles from sludge samples (approximately 1000 microparticles/g-dw and 2000 microparticles/g-dw, from dewatered and digested sludge, respectively) was achieved in comparison with the use of a lower density solution (NaCl, 1.2 g/cm3) (200 microparticles/g-dw and 600 microparticles/g-dw from dewatered and digested sludge, respectively). Moreover, although the use of peroxidation is an essential step to break down the sludge structure and to release microparticles to the liquid phase, the use of peroxidation after or before density separation did not affect the overall recovery of microparticles. Polyethylene, polypropylene, and copolymer ethylene-ethyl-acrylate were the main microplastic fragments identified in digested sludge and dewatered sludge. However, no relation was observed between the method applied and the polymer recovered. Regarding the presence of anthropogenic microparticle in centrifuge effluent, 450 ± 212 microparticles/L were counted, and although little is known about this stream, in can be a relevant source of anthropogenic microparticles.


Assuntos
Microplásticos , Esgotos , Plásticos , Polietileno , Polímeros , Polipropilenos , Esgotos/química
2.
J Environ Manage ; 255: 109739, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063314

RESUMO

The high presence of microplastics (MPs) in different sizes, materials and concentrations in the aquatic environment is a global concern due to their potential physically and chemically harm to aquatic organisms including mammals. Furthermore, the bioaccumulation of these compounds is leading to their ingestion by humans through the consumption of sea food and even through the terrestrial food chain. Even though conventional wastewater treatment plants are capable of eliminating more than 90% of the influent MPs, these systems are still the main source of MPs introduction in the environment due to the high volumes of effluents generated and returned to the environment. The amount of MPs dumped by WWTP is influenced by the configuration of the WWTP, population served and influent flow. Thus, the average of MP/L disposed vary widely depending on the region. In addition to MPs disposed in water bodies, more than 80% of these emerging contaminants, which enter the WWTP, are retained in biosolids that can be applied as fertilizers, representing a potential source of soil contamination. Due to the continuous disposal of MPs in the environment by effluent treatment systems and their polluting potential, separation and identification techniques have been assessed by several researchers, but unfortunately, there are no standard protocols for them. Aiming to provide insight about the relevance of studying the WWTP as source of MPs, this review summarizes the currently methodologies used to classify and identify them.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...