Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 43(6): 114296, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823019

RESUMO

To explore the influence of genetics on homeostatic regulation of dendritic cell (DC) numbers, we present a screen of DCs and their progenitors in lymphoid and non-lymphoid tissues in Collaborative Cross (CC) and Diversity Outbred (DO) mice. We report 30 and 71 loci with logarithm of the odds (LOD) scores >8.18 and ranging from 6.67 to 8.19, respectively. The analysis reveals the highly polygenic and pleiotropic architecture of this complex trait, including many of the previously identified genetic regulators of DC development and maturation. Two SNPs in genes potentially underlying variation in DC homeostasis, a splice variant in Gramd4 (rs235532740) and a missense variant in Orai3 (rs216659754), are confirmed by gene editing using CRISPR-Cas9. Gramd4 is a central regulator of DC homeostasis that impacts the entire DC lineage, and Orai3 regulates cDC2 numbers in tissues. Overall, the data reveal a large number of candidate genes regulating DC homeostasis in vivo.

2.
Cell Rep ; 40(10): 111311, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070690

RESUMO

Antiretroviral therapy controls, but does not cure, HIV-1 infection due to a reservoir of rare CD4+ T cells harboring latent proviruses. Little is known about the transcriptional program of latent cells. Here, we report a strategy to enrich clones of latent cells carrying intact, replication-competent HIV-1 proviruses from blood based on their expression of unique T cell receptors. Latent cell enrichment enabled single-cell transcriptomic analysis of 1,050 CD4+ T cells belonging to expanded clones harboring intact HIV-1 proviruses from 6 different individuals. The analysis reveals that most of these cells are T effector memory cells that are enriched for expression of HLA-DR, HLA-DP, CD74, CCL5, granzymes A and K, cystatin F, LYAR, and DUSP2. We conclude that expanded clones of latent cells carrying intact HIV-1 proviruses persist preferentially in a distinct CD4+ T cell population, opening possibilities for eradication.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Linfócitos T CD4-Positivos/metabolismo , Células Clonais , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , HIV-1/genética , HIV-1/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Provírus/genética , Provírus/metabolismo , Latência Viral/genética
3.
Nature ; 606(7913): 368-374, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418681

RESUMO

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Assuntos
Antirretrovirais , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Carga Viral , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Humanos , Provírus/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Latência Viral/efeitos dos fármacos
4.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533915

RESUMO

SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 mo after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen-specific memory that could contribute to rapid recall responses. Recovered individuals also show enduring alterations in relative overall numbers of CD4+ and CD8+ memory T cells, including expression of activation/exhaustion markers, and cell division.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Adulto , Idoso , Antígenos Virais/imunologia , Biomarcadores , Feminino , Humanos , Imunofenotipagem , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
5.
Nature ; 591(7851): 639-644, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33461210

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Biópsia , COVID-19/sangue , Estudos de Coortes , Imunofluorescência , Humanos , Imunidade Humoral/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Pessoa de Meia-Idade , Mutação , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
6.
bioRxiv ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33173867

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.

7.
bioRxiv ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33330867

RESUMO

SARS-CoV-2 is responsible for an ongoing pandemic that affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 months after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen specific memory that could contribute to rapid recall responses. In addition, recovered individuals show enduring immune alterations in relative numbers of CD4 + and CD8 + T cells, expression of activation/exhaustion markers, and cell division. SUMMARY: We show that SARS-CoV-2 infection elicits broadly reactive and highly functional memory T cell responses that persist 6 months after infection. In addition, recovered individuals show enduring immune alterations in CD4 + and CD8 + T cells compartments.

8.
Nat Immunol ; 19(9): 973-985, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127434

RESUMO

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Assuntos
Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Células Dendríticas/imunologia , Proteínas de Membrana/metabolismo , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/fisiologia , Células Th1/imunologia , Tuberculose/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Células Cultivadas , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunidade , Memória Imunológica , Lactente , Interferon gama/metabolismo , Linfadenopatia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Infecções por Mycobacterium/genética , Vacinação
10.
J Exp Med ; 213(13): 2931-2947, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27899441

RESUMO

The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2-/- mice after peripheral inoculation. Irf2-/- mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2-/- mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell-deficient µMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2-/- mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections.


Assuntos
Infecções por Alphavirus/imunologia , Linfócitos B/imunologia , Encefalopatias/imunologia , Movimento Celular/imunologia , Fator Regulador 2 de Interferon/imunologia , Sindbis virus/imunologia , Infecções por Alphavirus/genética , Infecções por Alphavirus/patologia , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/patologia , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/virologia , Movimento Celular/genética , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Fator Regulador 2 de Interferon/genética , Camundongos , Camundongos Knockout
11.
J Exp Med ; 213(13): 2861-2870, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27864467

RESUMO

In humans, conventional dendritic cells (cDCs) exist as two unique populations characterized by expression of CD1c and CD141. cDCs arise from increasingly restricted but well-defined bone marrow progenitors that include the common DC progenitor that differentiates into the pre-cDC, which is the direct precursor of cDCs. In this study, we show that pre-cDCs in humans are heterogeneous, consisting of two distinct populations of precursors that are precommitted to become either CD1c+ or CD141+ cDCs. The two groups of lineage-primed precursors can be distinguished based on differential expression of CD172a. Both subpopulations of pre-cDCs arise in the adult bone marrow and can be found in cord blood and adult peripheral blood. Gene expression analysis revealed that CD172a+ and CD172a- pre-cDCs represent developmentally discrete populations that differentially express lineage-restricted transcription factors. A clinical trial of Flt3L injection revealed that this cytokine increases the number of both CD172a- and CD172a+ pre-cDCs in human peripheral blood.


Assuntos
Antígenos CD1/metabolismo , Antígenos de Superfície/metabolismo , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicoproteínas/metabolismo , Células-Tronco/metabolismo , Adulto , Antígenos de Diferenciação/biossíntese , Células Dendríticas/citologia , Humanos , Receptores Imunológicos/biossíntese , Células-Tronco/citologia , Trombomodulina , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Nat Protoc ; 10(9): 1407-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26292072

RESUMO

Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings.


Assuntos
Células Dendríticas/citologia , Citometria de Fluxo/métodos , Células-Tronco/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Humanos
14.
J Immunol Methods ; 425: 21-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26056939

RESUMO

Different dendritic cell (DC) subsets co-exist in humans and coordinate the immune response. Having a short life, DCs must be constantly replenished from their progenitors in the bone marrow through hematopoiesis. Identification of a DC-restricted progenitor in mouse has improved our understanding of how DC lineage diverges from myeloid and lymphoid lineages. However, identification of the DC-restricted progenitor in humans has not been possible because a system that simultaneously nurtures differentiation of human DCs, myeloid and lymphoid cells, is lacking. Here we report a cytokine and stromal cell culture that allows evaluation of CD34(+) progenitor potential to all three DC subsets as well as other myeloid and lymphoid cells, at a single cell level. Using this system, we show that human granulocyte-macrophage progenitors are heterogeneous and contain restricted progenitors to DCs.


Assuntos
Células Dendríticas/imunologia , Células-Tronco/imunologia , Células Estromais/imunologia , Antígenos CD34/imunologia , Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Cultivadas , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Hematopoese/imunologia , Humanos , Linfócitos/imunologia
15.
J Exp Med ; 212(3): 401-13, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25687281

RESUMO

Two subsets of conventional dendritic cells (cDCs) with distinct cell surface markers and functions exist in mouse and human. The two subsets of cDCs are specialized antigen-presenting cells that initiate T cell immunity and tolerance. In the mouse, a migratory cDC precursor (pre-CDC) originates from defined progenitors in the bone marrow (BM). Small numbers of short-lived pre-CDCs travel through the blood and replace cDCs in the peripheral organs, maintaining homeostasis of the highly dynamic cDC pool. However, the identity and distribution of the immediate precursor to human cDCs has not been defined. Using a tissue culture system that supports the development of human DCs, we identify a migratory precursor (hpre-CDC) that exists in human cord blood, BM, blood, and peripheral lymphoid organs. hpre-CDCs differ from premonocytes that are restricted to the BM. In contrast to earlier progenitors with greater developmental potential, the hpre-CDC is restricted to producing CD1c(+) and CD141(+) Clec9a(+) cDCs. Studies in human volunteers demonstrate that hpre-CDCs are a dynamic population that increases in response to levels of circulating Flt3L.


Assuntos
Antígenos CD1/metabolismo , Antígenos de Superfície/metabolismo , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Proliferação de Células , Sangue Fetal/citologia , Humanos , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Tecido Linfoide/citologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Trombomodulina , Técnicas de Cultura de Tecidos
16.
J Exp Med ; 212(3): 385-99, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25687283

RESUMO

In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34(+) hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.


Assuntos
Células Dendríticas/citologia , Sangue Fetal/citologia , Monócitos/citologia , Animais , Antígenos CD34/metabolismo , Medula Óssea , Células da Medula Óssea , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Granulócitos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Mutantes , Análise de Célula Única , Células Estromais/citologia
17.
Immunol Lett ; 161(1): 65-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24845157

RESUMO

CD86 and CD80, the ligands for the co-stimulatory molecules CD28 and CTLA-4, are members of the Ig superfamily. Their structure includes Ig variable-like (IgV) domains, Ig constant-like (IgC) domains and intracellular domains. Although crystallographic studies have clearly identified the IgV domain to be responsible for receptor interactions, earlier studies suggested that both Ig domains are required for full co-signaling function. Herein, we have used deletion and chimeric human CD80 and CD86 molecules in co-stimulation assays to study the impact of the multimeric state of IgV and IgC domains on receptor binding properties and on co-stimulatory function in a peptide-specific T cell activation model. We report for the first time the presence of CD80 dimers and CD86 monomers in living cells. Moreover, we show that the IgC domain of both molecules inhibits multimer formation and greatly affects binding to the co-receptors CD28 and CTLA-4. Finally, both IgC and intracellular domains are required for full co-signaling function. These findings reveal the distinct but complementary roles of CD80 and CD86 IgV and IgC domains in T cell activation.


Assuntos
Antígeno B7-1/química , Antígeno B7-1/metabolismo , Antígeno B7-2/química , Antígeno B7-2/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Transdução de Sinais , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Interleucina-2/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Ligação Proteica , Multimerização Proteica , Deleção de Sequência
18.
J Immunol ; 191(5): 2194-204, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918986

RESUMO

Chronic activation of T cells is a hallmark of HIV-1 infection and plays an important role in disease progression. We previously showed that the engagement of the inhibitory receptor programmed death (PD)-1 on HIV-1-specific CD4(+) and CD8(+) T cells leads to their functional exhaustion in vitro. However, little is known about the impact of PD-1 expression on the turnover and maturation status of T cells during the course of the disease. In this study, we show that PD-1 is upregulated on all T cell subsets, including naive, central memory, and transitional memory T cells in HIV-1-infected subjects. PD-1 is expressed at similar levels on most CD4(+) T cells during the acute and the chronic phase of disease and identifies cells that have recently entered the cell cycle. In contrast, PD-1 expression is dramatically increased in CD8(+) T cells during the transition from acute to chronic infection, and this is associated with reduced levels of cell proliferation. The failure to downregulate expression of PD-1 in most T cells during chronic HIV-1 infection is associated with persistent alterations in the distribution of T cell subsets and is associated with impaired responses to IL-7. Our findings identify PD-1 as a marker for aberrant distribution of T cell subsets in HIV-1 infection.


Assuntos
Biomarcadores/análise , Infecções por HIV/imunologia , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Citometria de Fluxo , Infecções por HIV/metabolismo , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T/metabolismo
19.
Nat Med ; 19(6): 730-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23685841

RESUMO

Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell homeostasis and adaptive immunity through Flt3 ligand (Flt3l) release. Plasmodium-induced Flt3l release in mice requires Toll-like receptor (TLR) activation and type I interferon (IFN) production. We found that type I IFN supports the upregulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3l from a pre-synthesized membrane-associated precursor. During infection, Flt3l preferentially stimulates expansion of the CD8-α(+) dendritic cell subset or its BDCA3(+) human dendritic cell equivalent and has a substantial impact on the magnitude of T cell activation, mostly in the CD8(+) compartment. Our findings highlight a new mechanism that regulates dendritic cell homeostasis and T cell responses to infection.


Assuntos
Células Dendríticas/fisiologia , Malária/imunologia , Proteínas de Membrana/fisiologia , Linfócitos T/imunologia , Animais , Antígenos CD8/análise , Movimento Celular , Feminino , Humanos , Interferon Tipo I/fisiologia , Masculino , Mastócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Toll-Like/fisiologia , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
20.
Blood ; 121(25): 5034-44, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23482932

RESUMO

Functional differences between human dendritic cell (DC) subsets and the potential benefits of targeting them with vaccines remain poorly defined. Here we describe that mice with reconstituted human immune system components (huNSG mice) develop all human conventional and plasmacytoid DC compartments in lymphoid organs. Testing different Toll-like receptor agonists for DC maturation in vivo, we found that IL-12p70 and interferon (IFN)-α production correlated with the maturation of CD141+ (BDCA3+) conventional DCs in huNSG mice. Furthermore, depletion of CD141+ DCs before stimulation significantly reduced IFN-α levels in vivo. This DC subset produced similar total amounts but different subtypes of IFN-α in response to synthetic double-stranded RNA compared with plasmacytoid DCs in response to a single-stranded RNA equivalent. Moreover, synthetic double-stranded RNA as adjuvant and antigen targeting to the endocytic receptor DEC-205, a combination that focuses antigen presentation for T-cell priming on CD141+ DCs, stimulated antigen-specific human CD4+ T-cell responses. Thus, the human CD141+ DC subset is a prominent source of IFN-α and interleukin-12 production and should be further evaluated for vaccine development.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/imunologia , Interferon-alfa/biossíntese , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , RNA de Cadeia Dupla/imunologia , Receptores de Superfície Celular/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Interferon-alfa/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...