Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627076

RESUMO

As the identification of microorganisms becomes more significant in industry, so does the utilization of microspectroscopy and the development of effective chemometric models for data analysis and classification. Since only microorganisms cultivated under laboratory conditions can be identified, but they are exposed to a variety of stress factors, such as temperature differences, there is a demand for a method that can take these stress factors and the associated reactions of the bacteria into account. Therefore, bacterial stress reactions to lifetime conditions (regular treatment, 25 °C, HCl, 2-propanol, NaOH) and sampling conditions (cold sampling, desiccation, heat drying) were induced to explore the effects on Raman spectra in order to improve the chemometric models. As a result, in this study nine food-relevant bacteria were exposed to seven stress conditions in addition to routine cultivation as a control. Spectral alterations in lipids, polysaccharides, nucleic acids, and proteins were observed when compared to normal growth circumstances without stresses. Regardless of the involvement of several stress factors and storage times, a model for differentiating the analyzed microorganisms from genus down to strain level was developed. Classification of the independent training dataset at genus and species level for Escherichia coli and at strain level for the other food relevant microorganisms showed a classification rate of 97.6%.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269348

RESUMO

Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.

3.
Foods ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34441627

RESUMO

Because the robust and rapid determination of spoilage microorganisms is becoming increasingly important in industry, the use of IR microspectroscopy, and the establishment of robust and versatile chemometric models for data processing and classification, is gaining importance. To further improve the chemometric models, bacterial stress responses were induced, to study the effect on the IR spectra and to improve the chemometric model. Thus, in this work, nine important food-relevant microorganisms were subjected to eight stress conditions, besides the regular culturing as a reference. Spectral changes compared to normal growth conditions without stressors were found in the spectral regions of 900-1500 cm-1 and 1500-1700 cm-1. These differences might stem from changes in the protein secondary structure, exopolymer production, and concentration of nucleic acids, lipids, and polysaccharides. As a result, a model for the discrimination of the studied microorganisms at the genus, species and strain level was established, with an accuracy of 96.6%. This was achieved despite the inclusion of various stress conditions and times after incubation of the bacteria. In addition, a model was developed for each individual microorganism, to separate each stress condition or regular treatment with 100% accuracy.

4.
Talanta ; 232: 122424, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074410

RESUMO

Spoilage microorganisms are of great concern for the food industry. While traditional culturing methods for spoilage microorganism detection are laborious and time-consuming, the development of early detection methods has gained a lot of interest in the last decades. In this work a rapid and non-destructive detection and discrimination method of eight important food-related microorganisms (Bacillus subtilis DSM 10, Bacillus coagulans DSM 1, Escherichia coli K12 DSM 498, Escherichia coli TOP10, Micrococcus luteus DSM 20030, Pseudomonas fluorescens DSM 4358, Pseudomonas fluorescens DSM 50090 and Bacillus thuringiensis israelensis DSM 5724) based on IR-microspectroscopy and chemometric evaluation was developed. Sampling was carried out directly from the surface to be tested, without the need for sample preparation such as purification, singulation, centrifugation and washing steps, as an efficient and inexpensive blotting technique using the sample carrier. IR spectra were recorded directly after the blotting from the surface of the sample carrier without any further pretreatments. A combination of data preprocessing, principal component analysis and canonical discriminant analysis was found to be suitable. The spectral range from 400 to 1750 cm-1 of the IR-microspectrosopic data was determined to be highly sensitive to the time after incubation and sample thickness, resulting in a high standard deviation. Therefore, this area was excluded from the evaluation in favor of the meaningfulness of the chemometric model and, thus, only the spectral range of specific -CH/-NH/-OH excitations (2815-3680 cm-1) was used for model development. This study showed that the differentiation of food-related microorganisms on genera, species and strain level is feasible. A leave-one-out cross-validation of the training data set showed 100% accuracy. The classification of the ungrouped test data showed with an accuracy of 94.5% that, despite the large biological variance of the analytes such as different times after incubation and the presented sampling (including its variance), a robust and meaningful model for the differentiation of food-related bacteria could be developed by data preprocessing and subsequent chemometric evaluation.


Assuntos
Bactérias , Microbiologia de Alimentos , Análise Discriminante , Análise Multivariada , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Talanta ; 219: 121315, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887055

RESUMO

Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171T, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030T, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a data pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5% and 97.5%, respectively.


Assuntos
Carne , Análise Espectral Raman , Brochothrix , Análise Multivariada , Salmonella
6.
Talanta ; 196: 325-328, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683371

RESUMO

Raman-Microspectroscopy with subsequent chemometric evaluation was used for the rapid and non-destructive differentiation of seven important spoilage related microorganisms, namely Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens DSM 4358, Pseudomonas fluorescens DSM 50090, Micrococcus luteus, Escherichia coli HB101, Escherichia coli TOP10 and Bacillus thuringiensis israelensis DSM 5724. Therefore fast collected spectra directly from rapid surface blots without any pretreatments like purification or singulation steps were used. To estimate and classify the Raman-spectroscopic data at genera and strain level an adequate preprocessing together with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis was used. Thereby, importance was attached to a balanced data set, as this makes the multivariate analysis of the data significantly more resilient and meaningful. The analysis showed that the differentiation of spoilage related microorganisms on genera and strain level was successful and the classification of independent test data showed only an error rate of 3.5%.


Assuntos
Bactérias/isolamento & purificação , Inocuidade dos Alimentos , Análise Multivariada , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...