Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 11(19 Pt 1): 7012-22, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16203795

RESUMO

PURPOSE: Bladder carcinogenesis is believed to follow alternative pathways of disease progression driven by an accumulation of genetic alterations. The purpose of this study was to evaluate associations between measures of genomic instability and bladder cancer clinical phenotype. EXPERIMENTAL DESIGN: Genome-wide copy number profiles were obtained for 98 bladder tumors of diverse stages (29 pT(a), 14 pT1, 55 pT(2-4)) and grades (21 low-grade and 8 high-grade superficial tumors) by array-based comparative genomic hybridization (CGH). Each array contained 2,464 bacterial artificial chromosome and P1 clones, providing an average resolution of 1.5 Mb across the genome. A total of 54 muscle-invasive cases had follow-up information available. Overall outcome analysis was done for patients with muscle-invasive tumors having "good" (alive >2 years) versus "bad" (dead in <2 years) prognosis. RESULTS: Array CGH analysis showed significant increases in copy number alterations and genomic instability with increasing stage and with outcome. The fraction of genome altered (FGA) was significantly different between tumors of different stages (pT(a) versus pT1, P = 0.0003; pT(a) versus pT(2-4), P = 0.02; and pT1 versus pT(2-4), P = 0.03). Individual clones that differed significantly between different tumor stages were identified after adjustment for multiple comparisons (false discovery rate < 0.05). For muscle-invasive tumors, the FGA was associated with patient outcome (bad versus good prognosis patients, P = 0.002) and was identified as the only independent predictor of overall outcome based on a multivariate Cox proportional hazards method. Unsupervised hierarchical clustering separated "good" and "bad" prognosis muscle-invasive tumors into clusters that showed significant association with FGA and survival (Kaplan-Meier, P = 0.019). Supervised tumor classification (prediction analysis for microarrays) had a 71% classification success rate based on 102 unique clones. CONCLUSIONS: Array-based CGH identified quantitative and qualitative differences in DNA copy number alterations at high resolution according to tumor stage and grade. Fraction genome altered was associated with worse outcome in muscle-invasive tumors, independent of other clinicopathologic parameters. Measures of genomic instability add independent power to outcome prediction of bladder tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Hibridização de Ácido Nucleico , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Análise por Conglomerados , DNA/química , DNA/metabolismo , Progressão da Doença , Deleção de Genes , Perfilação da Expressão Gênica , Ligação Genética , Humanos , Processamento de Imagem Assistida por Computador , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Tempo , Resultado do Tratamento
2.
Infect Immun ; 73(10): 6680-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16177345

RESUMO

During its life cycle in intermediate hosts, Toxoplasma gondii exists in two interconverting developmental stages: tachyzoites and bradyzoites. This interconversion is essential for the survival and pathogenicity of the parasite, but little is known about the genetic mechanisms that control this process. We have previously generated tachyzoite-to-bradyzoite differentiation (Tbd(-)) mutants using chemical mutagenesis and a green fluorescent protein-based selection strategy. The genetic loci responsible for the Tbd(-) phenotype, however, could not be identified. We have now used an insertional mutagenesis strategy to generate two differentiation mutants: TBD-5 and TBD-6 that switch to bradyzoites at 10 and 50% of wild-type levels, respectively. In TBD-6 there is a single insertion of the mutagenesis vector 164 bp upstream of the transcription start site of a gene encoding a zinc finger protein (ZFP1). Disruption of this locus in wild-type parasites reproduces the decreased stage conversion phenotype. ZFP1 is targeted to the parasite nucleolus by CCHC motifs and significantly altered expression levels are toxic to the parasites. This represents the first identification of a gene necessary for efficient conversion of tachyzoites to bradyzoites.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Genes de Protozoários , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Dedos de Zinco
3.
Clin Cancer Res ; 11(11): 4044-55, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15930339

RESUMO

Models of bladder tumor progression have suggested that genetic alterations may determine both phenotype and clinical course. We have applied expression microarray analysis to a divergent set of bladder tumors to further elucidate the course of disease progression and to classify tumors into more homogeneous and clinically relevant subgroups. cDNA microarrays containing 10,368 human gene elements were used to characterize the global gene expression patterns in 80 bladder tumors, 9 bladder cancer cell lines, and 3 normal bladder samples. Robust statistical approaches accounting for the multiple testing problem were used to identify differentially expressed genes. Unsupervised hierarchical clustering successfully separated the samples into two subgroups containing superficial (pT(a) and pT(1)) versus muscle-invasive (pT(2)-pT(4)) tumors. Supervised classification had a 90.5% success rate separating superficial from muscle-invasive tumors based on a limited subset of genes. Tumors could also be classified into transitional versus squamous subtypes (89% success rate) and good versus bad prognosis (78% success rate). The performance of our stage classifiers was confirmed in silico using data from an independent tumor set. Validation of differential expression was done using immunohistochemistry on tissue microarrays for cathepsin E, cyclin A2, and parathyroid hormone-related protein. Genes driving the separation between tumor subsets may prove to be important biomarkers for bladder cancer development and progression and eventually candidates for therapeutic targeting.


Assuntos
Perfilação da Expressão Gênica , Neoplasias da Bexiga Urinária/genética , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Ciclina A/análise , Ciclina A2 , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HL-60 , Humanos , Imuno-Histoquímica , Masculino , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteína Relacionada ao Hormônio Paratireóideo/análise , Prognóstico , Neoplasias da Bexiga Urinária/classificação , Neoplasias da Bexiga Urinária/metabolismo
4.
Eukaryot Cell ; 1(3): 329-40, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12455982

RESUMO

Asexual development in Toxoplasma gondii is a vital aspect of the parasite's life cycle, allowing transmission and avoidance of the host immune response. Differentiation of rapidly dividing tachyzoites into slowly growing, encysted bradyzoites involves significant changes in both physiology and morphology. We generated microarrays of approximately 4,400 Toxoplasma cDNAs, representing a minimum of approximately 600 genes (based on partial sequencing), and used these microarrays to study changes in transcript levels during tachyzoite-to-bradyzoite differentiation. This approach has allowed us to (i) determine expression profiles of previously described developmentally regulated genes, (ii) identify novel developmentally regulated genes, and (iii) identify distinct classes of genes based on the timing and magnitude of changes in transcript levels. Whereas microarray analysis typically involves comparisons of mRNA levels at different time points, we have developed a method to measure relative transcript abundance between genes at a given time point. This method was used to determine transcript levels in parasites prior to differentiation and to further classify bradyzoite-induced genes, thus allowing a more comprehensive view of changes in gene expression than is provided by standard expression profiles. Newly identified developmentally regulated genes include putative surface proteins (a SAG1-related protein, SRS9, and a mucin-domain containing protein), regulatory and metabolic enzymes (methionine aminopeptidase, oligopeptidase, aminotransferase, and glucose-6-phosphate dehydrogenase homologues), and a subset of genes encoding secretory organelle proteins (MIC1, ROP1, ROP2, ROP4, GRA1, GRA5, and GRA8). This analysis permits the first in-depth look at changes in gene expression during development of this complex protozoan parasite.


Assuntos
Genes de Protozoários , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/genética , Animais , Enzimas/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Toxoplasma/metabolismo
5.
Mol Microbiol ; 44(3): 721-33, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11994153

RESUMO

Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Toxoplasma/genética , Animais , Antiprotozoários/farmacologia , Atovaquona , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Genes de Protozoários , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Mutagênese , Naftoquinonas/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Seleção Genética , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/parasitologia , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...