Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 1(8): 16080, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27573105

RESUMO

Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus da Influenza A/patogenicidade , Anticorpos de Domínio Único/isolamento & purificação , Vesiculovirus/patogenicidade , Células A549 , Humanos
2.
J Virol ; 89(5): 2792-800, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540369

RESUMO

UNLABELLED: Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE: Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.


Assuntos
Núcleo Celular/química , Núcleo Celular/virologia , Vírus da Influenza A/fisiologia , Proteínas de Ligação a RNA/análise , Anticorpos de Domínio Único/metabolismo , Proteínas do Core Viral/análise , Virologia/métodos , Replicação Viral , Animais , Linhagem Celular , Cães , Expressão Gênica , Biologia Molecular/métodos , Proteínas do Nucleocapsídeo , Anticorpos de Domínio Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...