Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(3): e2534, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044023

RESUMO

Continental- and regional-scale assessments of gaps in protected area networks typically use relatively coarse range maps for well documented species groups, creating uncertainty about the fate of unexamined biodiversity and providing insufficient guidance for land managers. By building habitat suitability models for a taxonomically diverse group of 2216 imperiled plants and animals, we revealed comprehensive and detailed protection opportunities in the conterminous United States. Summing protection-weighted range-size rarity (PWRSR, the product of the percent of modeled habitat outside of protected areas and the inverse of modeled habitat extent) uncovered novel patterns of biodiversity importance. Concentrations of unprotected imperiled species in places such as the northern Sierra Nevada, central and northern Arizona, the Rocky Mountains of Utah and Colorado, southeastern Texas, southwestern Arkansas, and Florida's Lake Wales Ridge have rarely if ever been featured in continental- and regional-scale analyses. Inclusion of diverse taxa (vertebrates, freshwater mussels, crayfishes, bumble bees, butterflies, skippers, and vascular plants) partially drove these new patterns. When analyses were restricted to groups typically included in previous studies (birds, mammals, and amphibians), up to 53% of imperiled species in other groups were left out. The finer resolution of modeled inputs (990 m) also resulted in a more geographically dispersed pattern. For example, 90% of the human population of the conterminous United States lives within 50 km of modeled habitat for one or more species with high PWRSR scores. Over one-half of the habitat for 818 species occurs within federally lands managed for biodiversity protection; an additional 360 species have over one-half of their modeled habitat on federal multiple use land. Freshwater animals occur in places with poorer landscape condition but with less exposure to climate change than other groups, suggesting that habitat restoration is an important conservation strategy for these species. The results provide fine-scale, taxonomically diverse inputs for local and regional priority-setting and show that although protection efforts are still widely needed on private lands, notable gains can be achieved by increasing protection status on selected federal lands.


Assuntos
Borboletas , Conservação dos Recursos Naturais , Animais , Biodiversidade , Aves , Ecossistema , Mamíferos
2.
Sci Rep ; 8(1): 11259, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050102

RESUMO

With increasing depth, the ocean is less sampled for physical, chemical and biological variables. Using the Global Marine Environmental Datasets (GMED) and Ecological Marine Units (EMUs), we show that spatial variation in environmental variables decreases with depth. This is also the case over temporal scales because seasonal change, surface weather conditions, and biological activity are highest in shallow depths. A stratified sampling approach to ocean sampling is therefore proposed whereby deeper environments, both pelagic and benthic, would be sampled with relatively lower spatial and temporal resolutions. Sampling should combine measurements of physical and chemical parameters with biological species distributions, even though species identification is difficult to automate. Species distribution data are essential to infer ecosystem structure and function from environmental data. We conclude that a globally comprehensive, stratification-based ocean sampling program would be both scientifically justifiable and cost-effective.

3.
Curr Biol ; 27(1): R36-R38, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073022

RESUMO

The mesopelagic or 'twilight zone' of the oceans occurs too deep for photosynthesis, but is a major part of the world's carbon cycle. Depth boundaries for the mesopelagic have now been shown on a global scale using the distribution of pelagic animals detected by compiling echo-soundings from ships around the world, and been used to predict the effect of global warming on regional fish production.


Assuntos
Ciclo do Carbono , Ecolocação , Peixes/fisiologia , Aquecimento Global , Oceanos e Mares , Animais , Mudança Climática , Pesqueiros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...