Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851642

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , Feminino , Masculino , Mesocricetus , SARS-CoV-2 , Comportamento Sexual , Caracteres Sexuais
2.
Viruses ; 14(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746734

RESUMO

Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Vírus da Influenza A/genética , Aves Domésticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
ACS ES T Water ; 2(11): 1953-1963, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552713

RESUMO

Wastewater-based epidemiology is now widely used as an indirect tool to monitor the spread of SARS-CoV-2. In this study, five different sample matrices representing diverse phases of the wastewater treatment process were collected during the second wave of SARS-CoV-2 from two wastewater treatment plants (WWTPs) serving the Civil Hospital and Sacca Fisola island in Venice, Italy. Positive SARS-CoV-2 detections occurred at both WWTPs, and data on viral genome detection rate and quantification suggest that the pellet (i.e., the particulate resulting from the influent) is a sensitive matrix that permits reliable assessment of infection prevalence while reducing time to results. On the contrary, analysis of post-treatment matrices provides evidence of the decontamination efficacy of both WWTPs. Finally, direct sequencing of wastewater samples enabled us to identify B.1.177 and B.1.160 as the prevalent SARS-CoV-2 lineages circulating in Venice at the time of sampling. This study confirmed the suitability of wastewater testing for studying SARS-CoV-2 circulation and established a simplified workflow for the prompt detection and characterization of the virus.

4.
J Hepatol ; 71(1): 130-142, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878582

RESUMO

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Capeamento de Actina CapZ/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatócitos/fisiologia , Fígado , Mecanotransdução Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Elasticidade , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Proteínas de Sinalização YAP
5.
Nat Cell Biol ; 21(3): 338-347, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718857

RESUMO

Extracellular matrix (ECM) mechanical cues have powerful effects on cell proliferation, differentiation and death. Here, starting from an unbiased metabolomics approach, we identify synthesis of neutral lipids as a general response to mechanical signals delivered by cell-matrix adhesions. Extracellular physical cues reverberate on the mechanical properties of the Golgi apparatus and regulate the Lipin-1 phosphatidate phosphatase. Conditions of reduced actomyosin contractility lead to inhibition of Lipin-1, accumulation of SCAP/SREBP to the Golgi apparatus and activation of SREBP transcription factors, in turn driving lipid synthesis and accumulation. This occurs independently of YAP/TAZ, mTOR and AMPK, and in parallel to feedback control by sterols. Regulation of SREBP can be observed in a stiffened diseased tissue, and contributes to the pro-survival activity of ROCK inhibitors in pluripotent stem cells. We thus identify a general mechanism centered on Lipin-1 and SREBP that links the physical cell microenvironment to a key metabolic pathway.


Assuntos
Matriz Extracelular/metabolismo , Metabolismo dos Lipídeos , Fosfatidato Fosfatase/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Junções Célula-Matriz/metabolismo , Microambiente Celular , Sinais (Psicologia) , Complexo de Golgi/metabolismo , Humanos , Metabolômica/métodos , Transdução de Sinais
6.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29650681

RESUMO

YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP-induced cell growth and underlies the resistance of YAP-addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS-induced senescence, YAP/TAZ bypass RAS-mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence-associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP-dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene-induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Nucleotídeos/biossíntese , Fosfoproteínas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Reprogramação Celular/genética , Senescência Celular/genética , Humanos , Neoplasias/patologia , Nucleotídeos/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...