Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583251

RESUMO

Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 µg mL-1 and 6.2 µg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 µg mL-1 and 11.2 µg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 µg mL-1 and 22.4 µg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Peptoides , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptoides/química , Peptoides/farmacologia , Peptoides/síntese química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Dimerização , Escherichia coli/efeitos dos fármacos , Humanos , Eritrócitos/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37931023

RESUMO

Sensors that can quickly measure the lipase activity from biological samples are useful in enzyme production and medical diagnostics. However, current lipase sensors have limitations such as requiring fluorescent labels, pH control of buffer vehicles, or lengthy assay preparation. We introduce a sparsely tethered triglyceride substrate anchored off of a gold electrode for the impedance sensing of real-time lipase activity. The tethered substrate is self-assembled using a rapid solvent exchange technique and can form an anchored bilayer 1 nm off the gold electrode. This allows for an aqueous reservoir region, providing access to ions transported through membrane defects caused by triglyceride enzymatic hydrolysis. Electrical impedance spectroscopy techniques can readily detect the decrease in resistance caused by enzymatically induced defects. This rapid and reliable lipase detection method can have potential applications in disease studies, monitoring of lipase production, and as point-of-care diagnostic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...