Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(35): 7613-22, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24666321

RESUMO

Infrared multiple photon dissociation (IRMPD) spectra of NO3(-)(HNO3)m(H2O)n(H2)z with m = 1-3, up to n = 8 and z ≥ 1, are measured in the fingerprint region (550-1880 cm(-1)), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the m = 1, n = 0 cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O2NO(-)···H(+)···ONO2(-)). It exhibits a strong absorption at 877 cm(-1) and lacks the characteristic NO2-antisymmetric stretching/NOH-bending mode absorption close to 1650 cm(-1). Addition of at least one more nitric acid molecule or two more water molecules weakens the hydrogen bond network, breaking the symmetry of this arrangement and leading to localization of the proton near one of the nitrate cores, effectively forming HNO3 hydrogen-bonded to NO3(-). Not all IR active modes are observed in the IRMPD spectra of the bare nitrate-nitric acid clusters. Addition of a water or a hydrogen molecule lowers the dissociation limit of the complexes and relaxes (H2O) or lifts (H2) this IRMPD transparency.

2.
J Phys Chem A ; 117(32): 7081-90, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23713566

RESUMO

The structure and stability of mass-selected bisulfate, sulfuric acid, and water cluster anions, HSO4(-)(H2SO4)m(H2O)n, are studied by infrared photodissociation spectroscopy aided by electronic structure calculations. The triply hydrogen-bound HSO4(-)(H2SO4) configuration appears as a recurring motif in the bare clusters, while incorporation of water disrupts this stable motif for clusters with m > 1. Infrared-active vibrations predominantly involving distortions of the hydrogen-bound network are notably missing from the infrared multiple-photon dissociation (IRMPD) spectra of these ions but are fully recovered by messenger-tagging the clusters with H2. A simple model is used to explain the observed "IRMPD transparency".

3.
J Chem Phys ; 136(24): 241102, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22755558

RESUMO

Infrared multiple photon dissociation spectra for the smallest atmospherically relevant anions of sulfuric and nitric acid allow us to characterize structures and distinguish between clusters with a bisulfate or a nitrate core. We find that bisulfate is the main charge carrier for HSO(4)(-)·H(2)SO(4)·HNO(3) but not for NO(3)(-)·H(2)SO(4)·HNO(3). For the mixed dimer anion, we find evidence for the presence of two isomers: HSO(4)(-)·HNO(3) and NO(3)(-)·H(2)SO(4). Density functional calculations accompany the experimental results and provide support for these observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...