Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 144(24): 7296-7309, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710321

RESUMO

Considerable evidence suggests breast cancer metastasis arises from cells undergoing epithelial-to-mesenchymal-transition (EMT) and cancer stem-like cells (CSCs). Using a microfluidic device that enriches migratory breast cancer cells with enhanced capacity for tumor formation and metastasis, we identified genes differentially expressed in migratory cells by high-throughput single-cell RNA-sequencing. Migratory cells exhibited overall signatures of EMT and CSCs with variable expression of marker genes, and they retained expression profiles of EMT over time. With single-cell resolution, we discovered intermediate EMT states and distinct epithelial and mesenchymal sub-populations of migratory cells, indicating breast cancer cells can migrate rapidly while retaining an epithelial state. Migratory cells showed differential profiles for regulators of oxidative stress, mitochondrial morphology, and the proteasome, revealing potential vulnerabilities and unexpected consequences of drugs. We also identified novel genes correlated with cell migration and outcomes in breast cancer as potential prognostic biomarkers and therapeutic targets to block migratory cells in metastasis.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Genes Neoplásicos , Metástase Neoplásica/genética , RNA/análise , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células-Tronco Neoplásicas/química , Análise de Célula Única/métodos , Transcriptoma
2.
Nat Commun ; 10(1): 2163, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092822

RESUMO

Molecular analysis of circulating tumor cells (CTCs) at single-cell resolution offers great promise for cancer diagnostics and therapeutics from simple liquid biopsy. Recent development of massively parallel single-cell RNA-sequencing (scRNA-seq) provides a powerful method to resolve the cellular heterogeneity from gene expression and pathway regulation analysis. However, the scarcity of CTCs and the massive contamination of blood cells limit the utility of currently available technologies. Here, we present Hydro-Seq, a scalable hydrodynamic scRNA-seq barcoding technique, for high-throughput CTC analysis. High cell-capture efficiency and contamination removal capability of Hydro-Seq enables successful scRNA-seq of 666 CTCs from 21 breast cancer patient samples at high throughput. We identify breast cancer drug targets for hormone and targeted therapies and tracked individual cells that express markers of cancer stem cells (CSCs) as well as of epithelial/mesenchymal cell state transitions. Transcriptome analysis of these cells provides insights into monitoring target therapeutics and processes underlying tumor metastasis.


Assuntos
Neoplasias da Mama/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem Celular , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Biópsia Líquida/instrumentação , Biópsia Líquida/métodos , Camundongos , Análise de Sequência de RNA/instrumentação , Análise de Sequência de RNA/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
3.
Integr Biol (Camb) ; 10(12): 758-767, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30420987

RESUMO

Metastasis is the cause of death in most patients of breast cancer and other solid malignancies. Identification of cancer cells with highly migratory capability to metastasize relies on markers for epithelial-to-mesenchymal transition (EMT), a process increasing cell migration and metastasis. Marker-based approaches are limited by inconsistences among patients, types of cancer, and partial EMT states. Alternatively, we analyzed cancer cell migration behavior using computer vision. Using a microfluidic single-cell migration chip and high-content imaging, we extracted morphological features and recorded migratory direction and speed of breast cancer cells. By applying a Random Decision Forest (RDF) and an Artificial Neural Network (ANN), we achieved over 99% accuracy for cell movement direction prediction and 91% for speed prediction. Unprecedentedly, we identified highly motile cells and non-motile cells based on microscope images and a machine learning model, and pinpointed and validated morphological features determining cell migration, including not only known features related to cell polarization but also novel ones that can drive future mechanistic studies. Predicting cell movement by computer vision and machine learning establishes a ground-breaking approach to analyze cell migration and metastasis.


Assuntos
Movimento Celular , Técnicas de Apoio para a Decisão , Neoplasias/diagnóstico , Neoplasias/patologia , Redes Neurais de Computação , Algoritmos , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Aprendizado Profundo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Modelos Biológicos , Metástase Neoplásica , Reprodutibilidade dos Testes , Análise de Célula Única
4.
Sci Rep ; 8(1): 244, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321615

RESUMO

Isolation of tumor-initiating cells currently relies on markers that do not reflect essential biologic functions of these cells. We proposed to overcome this limitation by isolating tumor-initiating cells based on enhanced migration, a function tightly linked to tumor-initiating potential through epithelial-to-mesenchymal transition (EMT). We developed a high-throughput microfluidic migration platform with automated cell tracking software and facile recovery of cells for downstream functional and genetic analyses. Using this device, we isolated a small subpopulation of migratory cells with significantly greater tumor formation and metastasis in mouse models. Whole transcriptome sequencing of migratory versus non-migratory cells from two metastatic breast cancer cell lines revealed a unique set of genes as key regulators of tumor-initiating cells. We focused on phosphatidylserine decarboxylase (PISD), a gene downregulated by 8-fold in migratory cells. Breast cancer cells overexpressing PISD exhibited reduced tumor-initiating potential in a high-throughput microfluidic mammosphere device and mouse xenograft model. PISD regulated multiple aspects of mitochondria, highlighting mitochondrial functions as therapeutic targets against cancer stem cells. This research establishes not only a novel microfluidic technology for functional isolation of tumor-initiating cells regardless of cancer type, but also a new approach to identify essential regulators of these cells as targets for drug development.


Assuntos
Carboxiliases/metabolismo , Separação Celular , Técnicas Analíticas Microfluídicas , Células-Tronco Neoplásicas/metabolismo , Animais , Carboxiliases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Separação Celular/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Mitocôndrias/metabolismo , Fenótipo , Transcriptoma
5.
Lab Chip ; 16(19): 3708-17, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27510097

RESUMO

Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.


Assuntos
Dispositivos Lab-On-A-Chip , Análise de Célula Única/instrumentação , Esferoides Celulares/patologia , Automação , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular , Células-Tronco Neoplásicas/patologia
6.
Lab Chip ; 16(10): 1861-72, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27080172

RESUMO

We developed an open microfluidic system to dispense and manipulate discrete droplets on planar plastic sheets. Here, a superhydrophobic material is spray-coated on commercially-available plastic sheets followed by the printing of hydrophilic symbols using an inkjet printer. The patterned plastic sheets are taped to a two-axis tilting platform, powered by stepper motors, that provides mechanical agitation for droplet transport. We demonstrate the following droplet operations: transport of droplets of different sizes, parallel transport of multiple droplets, merging and mixing of multiple droplets, dispensing of smaller droplets from a large droplet or a fluid reservoir, and one-directional transport of droplets. As a proof-of-concept, a colorimetric assay is implemented to measure the glucose concentration in sheep serum. Compared to silicon-based digital microfluidic devices, we believe that the presented system is appealing for various biological experiments because of the ease of altering design layouts of hydrophilic symbols, relatively faster turnaround time in printing plastic sheets, larger area to accommodate more tests, and lower operational costs by using off-the-shelf products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...