Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(34): 14043-14054, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580994

RESUMO

Due to their programmability via specific base pairing, self-assembled DNA origami structures have proven to be useful for a wide variety of applications, including diagnostics, molecular computation, drug delivery, and therapeutics. Measuring and characterizing these structures is therefore of great interest and an important part of quality control. Here, we show the extent to which DNA nanostructures can be characterized by a solid-state nanopore; a non-destructive, label-free, single-molecule sensor capable of electrically detecting and characterizing charged biomolecules. We demonstrate that in addition to geometrical dimensions, nanopore sensing can provide information on the mechanical properties, assembly yield, and stability of DNA nanostructures. For this work, we use a model structure consisting of a 3 helix-bundle (3HB), i.e. three interconnected DNA double helices using a M13 scaffold folded twice on itself by short DNA staple strands, and translocate it through solid-state nanopores fabricated by controlled breakdown. We present detailed analysis of the passage characteristics of 3HB structures through nanopores under different experimental conditions which suggest that segments of locally higher flexibility are present along the nanostructure contour that allow for the otherwise rigid 3HB to fold inside nanopores. By characterizing partially melted 3HB structures, we find that locally flexible segments are likely due to short staple oligomers missing from the fully assembled structure. The 3HB used herein is a prototypical example to establish nanopores as a sensitive, non-destructive, and label-free alternative to conventional techniques such as gel electrophoresis with which to characterize DNA nanostructures.


Assuntos
Nanoporos , Nanoestruturas , Nanoestruturas/química , DNA/química , Nanotecnologia/métodos
2.
ACS Sens ; 8(7): 2809-2823, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37436112

RESUMO

Nanopores are versatile single-molecule sensors that are being used to sense increasingly complex mixtures of structured molecules with applications in molecular data storage and disease biomarker detection. However, increased molecular complexity presents additional challenges to the analysis of nanopore data, including more translocation events being rejected for not matching an expected signal structure and a greater risk of selection bias entering this event curation process. To highlight these challenges, here, we present the analysis of a model molecular system consisting of a nanostructured DNA molecule attached to a linear DNA carrier. We make use of recent advances in the event segmentation capabilities of Nanolyzer, a graphical analysis tool provided for nanopore event fitting, and describe approaches to the event substructure analysis. In the process, we identify and discuss important sources of selection bias that emerge in the analysis of this molecular system and consider the complicating effects of molecular conformation and variable experimental conditions (e.g., pore diameter). We then present additional refinements to existing analysis techniques, allowing for improved separation of multiplexed samples, fewer translocation events rejected as false negatives, and a wider range of experimental conditions for which accurate molecular information can be extracted. Increasing the coverage of analyzed events within nanopore data is not only important for characterizing complex molecular samples with high fidelity but is also becoming essential to the generation of accurate, unbiased training data as machine-learning approaches to data analysis and event identification continue to increase in prevalence.


Assuntos
Nanoporos , Nanotecnologia/métodos , DNA/química
3.
ACS Meas Sci Au ; 2(2): 139-146, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479104

RESUMO

Traditional enzyme-linked immunosorbent assay (ELISA), long the workhorse for specific target protein detection using microplate wells, is nearing its fundamental limit of sensitivity. New opportunities in health care call for in vitro diagnostic tests with ultrahigh sensitivity. Magnetic bead-based sandwich immunoassay formats have been developed that can reach unprecedented sensitivities, orders of magnitude better than are allowed for by the rate constants for a single ligand-receptor interaction. However, these ultrahigh sensitivity assays are vulnerable to a host of confounding factors, including nonspecific binding from background molecules and loss of low-abundance target to tube walls and during wash steps. Moreover, the optimization of workflow is often time-consuming and expensive. In this work, we present a simulation tool that allows users to graphically define arbitrary binding assays, including fully reversible first-order binding kinetics, timed addition of extra components, and timed wash steps. The tool is freely available as a user-friendly webapp. The framework is lightweight and fast, allowing for inexpensive simulation and visualization of arbitrarily complex assay schemes, including but not limited to digital immunoassays, DNA hybridization, and enzyme kinetics, for validation and optimization of assay designs without requiring any programming knowledge from the user. We demonstrate some of these capabilities and provide practical guidance on assay simulation design.

4.
ACS Sens ; 7(1): 207-214, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34995448

RESUMO

Single-molecule detection methods are becoming increasingly important for diagnostic applications. Practical early detection of disease requires sensitivity down to the level of single copies of the targeted biomarkers. Of the candidate technologies that can address this need, solid-state nanopores show great promise as digital sensors for single-molecule detection. Here, we present work detailing the use of solid-state nanopores as downstream sensors for a polymerase chain reaction (PCR)-based assay targeting group A streptococcus (strep A), which can be readily extended to detect any pathogen that can be identified with a short nucleic acid sequence. We demonstrate that with some simple modifications to the standard PCR reaction mixture, nanopores can be used to reliably identify strep A in clinical samples. We also discuss methodological best practices for both adapting PCR-based assays to solid-state nanopore readout and analytical approaches by which to decide on sample status.


Assuntos
Nanoporos , Infecções Estreptocócicas , Sequência de Bases , Humanos , Nanotecnologia/métodos , Reação em Cadeia da Polimerase , Infecções Estreptocócicas/diagnóstico
5.
Nat Commun ; 12(1): 5348, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504071

RESUMO

Single-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores-fully electronic sensors with single-molecule sensitivity-are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence ("1") or absence ("0") of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format.


Assuntos
Biomarcadores/sangue , Imunoensaio/métodos , Nanoporos , Nanotecnologia/métodos , Tireotropina/sangue , Algoritmos , Proteínas Sanguíneas/análise , DNA/química , Humanos , Medicina de Precisão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Nanotechnology ; 31(44): 44LT01, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32698174

RESUMO

We present a thorough exploration of nanopore growth under electrical stress in electrolyte solution, and demonstrate that despite their superficial similarities, nanopore formation by controlled breakdown (CBD) and nanopore growth under moderate voltage stress are fundamentally different processes. In particular, we demonstrate that unlike the CBD process, nanopore growth is primarily driven by the level of ionic current passing through the nanopore, rather than the strength of the electric field generating the current, and that enlargement has a much weaker pH dependence than does CBD pore formation. In combination with other works in the field, our results suggest that despite clear current-dependence, Joule heating is unlikely to be the main driver of pore growth during electrical stress, pointing instead toward electrochemical dissolution of membrane material along the pore walls. While the chemistry underlying the growth process remains unclear, the dependence of growth rate on current allows decoupling of the pore enlargement mechanism from the possibility of forming additional nanopores during the growth process, providing a practical method by which to rapidly enlarge a nanopore without risking opening a second nanopore.

7.
Nat Protoc ; 15(1): 122-143, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836867

RESUMO

Solid-state nanopores are now well established as single-biomolecule sensors that hold great promise as sensing elements in diagnostic and sequencing applications. However, until recently this promise has been limited by the expensive, labor-intensive, and low-yield methods used to fabricate low-noise and precisely sized pores. To address this problem, we pioneered a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), which is rapidly becoming the method of choice for fabricating solid-state nanopores. Since its initial development, nanopore research groups around the world have applied and adapted the CBD method in a variety of ways, with varying levels of success. In this work, we present our accumulated knowledge of nanopore fabrication by CBD, including a detailed description of the instrumentation, software, and procedures required to reliably fabricate low-noise and precisely sized solid-state nanopores with a yield of >85% in less than 1 h. The assembly instructions for the various custom instruments can be found in the Supplementary Manual, and take approximately a day to complete, depending on the unit that the user is building and their level of skill with mechanical and electrical assembly. Unlike traditional beam-based nanopore fabrication technologies, the methods presented here are accessible to non-experts, lowering the cost of, and technical barriers to, fabricating nanoscale pores in thin solid-state membranes.


Assuntos
Nanoporos , Nanotecnologia/instrumentação , Automação , Membranas Artificiais
8.
Anal Chem ; 91(19): 12228-12237, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31438671

RESUMO

Using a solid-state nanopore to measure the concentration of clinically relevant target analytes, such as proteins or specific DNA sequences, is a major goal of nanopore research. This is usually achieved by measuring the capture rate of the target analyte through the pore. However, progress is hindered by sources of systematic error that are beyond the level of control currently achievable with state-of-the-art nanofabrication techniques. In this work, we show that the capture rate process of solid-state nanopores is subject to significant sources of variability, both within individual nanopores over time and between different nanopores of nominally identical size, which are absent from theoretical electrophoretic capture models. We experimentally reveal that these fluctuations are inherent to the nanopore itself and make nanopore-based molecular concentration determination insufficiently precise to meet the standards of most applications. In this work, we present a simple method by which to reduce this variability, increasing the reliability, accuracy, and precision of single-molecule nanopore-based concentration measurements. We demonstrate controlled counting, a concentration measurement technique, which involves measuring the simultaneous capture rates of a mixture of both the target molecule and an internal calibrator of precisely known concentration. Using this method on linear DNA fragments, we show empirically that the requirements for precisely controlling the nanopore properties, including its size, height, geometry, and surface charge density or distribution, are removed while allowing for higher-precision measurements. The quantitative tools presented herein will greatly improve the utility of solid-state nanopores as sensors of target biomolecule concentration.


Assuntos
DNA/análise , Biologia Molecular/métodos , Nanoporos , Algoritmos , Eletroforese , Biologia Molecular/instrumentação
9.
Adv Mater Interfaces ; 6(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32577337

RESUMO

Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF2 etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.

10.
ACS Appl Nano Mater ; 2(8): 4773-4781, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32577609

RESUMO

Elucidating the kinetics of DNA passage through a solid-state nanopore is a fertile field of research, and mechanisms for controlling capture, passage, and trapping of biopolymers are likely to find numerous technological applications. Here we present a nanofiltered nanopore device, which forms an entropic cage for DNA following first passage through the nanopore, trapping the translocated DNA and permitting recapture for subsequent reanalysis and investigation of kinetics of passage under confinement. We characterize the trapping properties of this nanodevice by driving individual DNA polymers into the nanoscale gap separating the nanofilter and the pore, forming an entropic cage similar to a "two pores in series" device, leaving polymers to diffuse in the cage for various time lengths, and attempting to recapture the same molecule. We show that the cage results in effectively permanent trapping when the radius of gyration of the target polymer is significantly larger than the radii of the pores in the nanofilter. We also compare translocation dynamics as a function of translocation direction in order to study the effects of confinement on DNA just prior to translocation, providing further insight into the nanopore translocation process. This nanofiltered nanopore device realizes simple fabrication of a femtoliter nanoreactor in which to study fundamental biophysics and biomolecular reactions on the single-molecule level. The device provides an electrically-permeable single-molecule trap with a higher entropic barrier to escape than previous attempts to fabricate similar structures.

11.
Nano Lett ; 18(2): 660-668, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087723

RESUMO

To reduce unwanted variation in the passage speed of DNA through solid-state nanopores, we demonstrate nanoscale preconfinement of translocating molecules using an ultrathin nanoporous silicon nitride membrane separated from a single sensing nanopore by a nanoscale cavity. We present comprehensive experimental and simulation results demonstrating that the presence of an integrated nanofilter within nanoscale distances of the sensing pore eliminates the dependence of molecular passage time distributions on pore size, revealing a global minimum in the coefficient of variation of the passage time. These results provide experimental verification that the inter- and intramolecular passage time variation depends on the conformational entropy of each molecule prior to translocation. Furthermore, we show that the observed consistently narrower passage time distributions enables a more reliable DNA length separation independent of pore size and stability. We also demonstrate that the composite nanofilter/nanopore devices can be configured to suppress the frequency of folded translocations, ensuring single-file passage of captured DNA molecules. By greatly increasing the rate at which usable data can be collected, these unique attributes will offer significant practical advantages to many solid-state nanopore-based sensing schemes, including sequencing, genomic mapping, and barcoded target detection.


Assuntos
DNA/química , Nanoporos/ultraestrutura , Algoritmos , Entropia , Filtração , Movimento (Física) , Nanotecnologia
12.
Nanotechnology ; 28(8): 085304-85304, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045003

RESUMO

We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

13.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026148

RESUMO

On-chip microvalves regulate electrical and fluidic access to an array of nanopores integrated within microfluidic networks. This configuration allows for on-chip sequestration of biomolecular samples in various flow channels and analysis by independent nanopores.

14.
Anal Chem ; 88(23): 11900-11907, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27797501

RESUMO

Biological and solid-state nanometer-scale pores are the basis for numerous emerging analytical technologies for use in precision medicine. We developed Modular Single-Molecule Analysis Interface (MOSAIC), an open source analysis software that improves the accuracy and throughput of nanopore-based measurements. Two key algorithms are implemented: ADEPT, which uses a physical model of the nanopore system to characterize short-lived events that do not reach their steady-state current, and CUSUM+, a version of the cumulative sum statistical method optimized for longer events that do. We show that ADEPT detects previously unreported conductance states that occur as double-stranded DNA translocates through a 2.4 nm solid-state nanopore and reveals new interactions between short single-stranded DNA and the vestibule of a biological pore. These findings demonstrate the utility of MOSAIC and the ADEPT algorithm, and offer a new tool that can improve the analysis of nanopore-based measurements.


Assuntos
DNA de Cadeia Simples/análise , DNA/análise , Nanoporos , Nanotecnologia , Análise de Sequência de DNA , Algoritmos , Software
15.
PLoS One ; 11(5): e0154426, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149679

RESUMO

The promise of portable diagnostic devices relies on three basic requirements: comparable sensitivity to established platforms, inexpensive manufacturing and cost of operations, and the ability to survive rugged field conditions. Solid state nanopores can meet all these requirements, but to achieve high manufacturing yields at low costs, assays must be tolerant to fabrication imperfections and to nanopore enlargement during operation. This paper presents a model for molecular engineering techniques that meets these goals with the aim of detecting target sequences within DNA. In contrast to methods that require precise geometries, we demonstrate detection using a range of pore geometries. As a result, our assay model tolerates any pore-forming method and in-situ pore enlargement. Using peptide nucleic acid (PNA) probes modified for conjugation with synthetic bulk-adding molecules, pores ranging 15-50 nm in diameter are shown to detect individual PNA-bound DNA. Detection of the CFTRΔF508 gene mutation, a codon deletion responsible for ∼66% of all cystic fibrosis chromosomes, is demonstrated with a 26-36 nm pore size range by using a size-enhanced PNA probe. A mathematical framework for assessing the statistical significance of detection is also presented.


Assuntos
DNA/química , Nanoporos , Análise de Sequência de DNA/métodos , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Ácidos Nucleicos Peptídicos/química
16.
Electrophoresis ; 36(15): 1759-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929480

RESUMO

We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.


Assuntos
Resinas Acrílicas/química , DNA/isolamento & purificação , Nanoporos , Nanotecnologia/métodos , Sefarose/química
17.
Nanotechnology ; 26(8): 084004, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25648336

RESUMO

Nanopore fabrication by controlled breakdown (CBD) overcomes many of the challenges of traditional nanofabrication techniques, by reliably forming solid-state nanopores sub-2 nm in size in a low-cost and scalable way for nucleic acid analysis applications. Herein, the breakdown kinetics of thin dielectric membranes immersed in a liquid environment are investigated in order to gain deeper insights into the mechanism of solid-state nanopore formation by high electric fields. For various fabrication conditions, we demonstrate that nanopore fabrication time is Weibull-distributed, in support of the hypothesis that the fabrication mechanism is a stochastic process governed by the probability of forming a connected path across the membrane (i.e. a weakest-link problem). Additionally, we explore the roles that various ions and solvents play in breakdown kinetics, revealing that asymmetric pH conditions across the membrane can significantly affect nanopore fabrication time for a given voltage polarity. These results, characterizing the stochasticity of the nanopore fabrication process and highlighting the parameters affecting it, should assist researchers interested in exploiting the potential of CBD for nanofluidic channel fabrication, while also offering guidance towards the conceivable manufacturing of solid-state nanopore-based technologies for DNA sequencing applications.

18.
Small ; 10(10): 2077-86, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24585682

RESUMO

We demonstrate the automated and reproducible fabrication of sub-2-nm nanopores in 10-nm thick silicon nitride membranes, through controlled dielectric breakdown in solution. Our results reveal that under the appropriate conditions, nanopores can be fabricated with a size no larger than 2.0 ± 0.5-nm in diameter for a sample of N = 23 nanopores, with an average and standard deviation of 1.3 ± 0.6-nm. The dimensions of these nanopores are confirmed by using individual translocating DNA molecules as molecular rulers. We show that a 2.0-nm and a 2.1-nm diameter nanopore are capable of distinguishing single-stranded DNA versus double-stranded DNA, and that a 2.4-nm diameter nanopore can be used to investigate the overstretching transition in short dsDNA fragments. These results highlight the reliability and precision of the automated fabrication of nanopores via controlled dielectric breakdown, showing great promise for the manufacturing of future nanopore-based technologies.


Assuntos
DNA/análise , DNA/genética , Membranas Artificiais , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Condutometria/instrumentação , DNA/química , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanopartículas/química , Porosidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Compostos de Silício/química
19.
PLoS One ; 9(3): e92880, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658537

RESUMO

Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies.


Assuntos
Eletrônica/métodos , Nanoporos , Nanotecnologia/métodos , Eletrônica/instrumentação , Nanotecnologia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...