Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1277963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152113

RESUMO

One way to mitigate the ongoing antimicrobial resistance crisis is to discover and develop new classes of antibiotics. As all antibiotics at some point need to either cross or just interact with the bacterial membrane, there is a need for representative models of bacterial membranes and efficient methods to characterize the interactions with novel molecules -both to generate new knowledge and to screen compound libraries. Since the bacterial cell envelope is a complex assembly of lipids, lipopolysaccharides, membrane proteins and other components, constructing relevant synthetic liposome-based models of the membrane is both difficult and expensive. We here propose to let the bacteria do the hard work for us. Bacterial extracellular vesicles (bEVs) are naturally secreted by Gram-negative and Gram-positive bacteria, playing a role in communication between bacteria, as virulence factors, molecular transport or being a part of the antimicrobial resistance mechanism. bEVs consist of the bacterial outer membrane and thus inherit many components and properties of the native outer cell envelope. In this work, we have isolated and characterized bEVs from one Escherichia coli mutant and three clinical strains of the ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The bEVs were shown to be representative models for the bacterial membrane in terms of lipid composition with speciesstrain specific variations. The bEVs were further used to probe the interactions between bEV and antimicrobial peptides (AMPs) as model compounds by Surface Plasmon Resonance (SPR) and provide proof-of-principle that bEVs can be used as an easily accessible and highly realistic model for the bacterial surface in interaction studies. This further enables direct monitoring of the effect induced by antibiotics, or the response to host-pathogen interactions.

2.
Biomolecules ; 13(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509189

RESUMO

Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan).


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos/metabolismo , Escherichia coli/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo
3.
Front Mol Biosci ; 9: 763750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495628

RESUMO

The CW domain binds to histone tail modifications found in different protein families involved in epigenetic regulation and chromatin remodeling. CW domains recognize the methylation state of the fourth lysine on histone 3 and could, therefore, be viewed as a reader of epigenetic information. The specificity toward different methylation states such as me1, me2, or me3 depends on the particular CW subtype. For example, the CW domain of ASHH2 methyltransferase binds preferentially to H3K4me1, and MORC3 binds to both H3K4me2 and me3 modifications, while ZCWPW1 is more specific to H3K4me3. The structural basis for these preferential bindings is not well understood, and recent research suggests that a more complete picture will emerge if dynamical and energetic assessments are included in the analysis of interactions. This study uses fold assessment by NMR in combination with mutagenesis, ITC affinity measurements, and thermal denaturation studies to investigate possible couplings between ASHH2 CW selectivity toward H3K4me1 and the stabilization of the domain and loops implicated in binding. The key elements of the binding site-the two tryptophans and the α1-helix form and maintain the binding pocket- were perturbed by mutagenesis and investigated. Results show that the α1-helix maintains the overall stability of the fold via the I915 and L919 residues and that the correct binding consolidates the loops designated as η1 and η3, as well as the C-terminal. This consolidation is incomplete for H3K4me3 binding to CW, which experiences a decrease in overall thermal stability on binding. Loop mutations not directly involved in the binding site, nonetheless, affect the equilibrium positions of the key residues.

4.
Biomol NMR Assign ; 12(1): 215-220, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453713

RESUMO

The ASHH2 CW domain is responsible for recognizing the methylation state at lysine 4 of histone 3 N-terminal tails and implicated in the recruitment of the ASHH2 methyltransferase enzyme correctly to the histones. The ASHH2 CW domain binds H3 lysine motifs that can be either mono-, di-, or tri-methylated [ARTK(meX)QTAR, where X denotes the number of methylations], but binds strongest to monomethylated instances (Kd values reported in the range of 1 µm to 500 nM). Hoppmann et al. published the uncomplexed NMR structure of an ASHH2 CW domain in 2011. Here we document the assignment of a shortened ASHH2 CW construct, CW42, with similar binding affinity and better expression yields than the one used to solve the uncomplexed structure. We also perform 1H-15N HSQC-monitored titrations that document at which protein-peptide ratios the complex is saturated. Backbone resonance assignments are presented for this shortened ASHH2 CW domain alone and bound to an H3 histone tail mimicking peptide monomethylated on lysine 4 (ARTK(me1)QTAR). Likewise, the assignment was also performed for the protein in complex with the dimethylated (ARTK(me2)QTAR) and trimethylated (ARTK(me3)QTAR) peptide. Overall, these two latter situations displayed a similar perturbation of shifts as the mono-methylated instance. In the case of the monomethylated histone tail mimic, side-chain assignment of CW42 in this complex was performed and reported in addition to backbone assignment, in preparation of a future solution structure determination and dynamics characterization of the CW42-ARTK(me1)QTAR complex.


Assuntos
Histonas/química , Histonas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Metilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...