RESUMO
Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous â¢OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous â¢OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.
Assuntos
Compostos Azo , Boro , Corantes , Diamante , Eletrodos , Oxirredução , Poluentes Químicos da Água , Corantes/química , Poluentes Químicos da Água/química , Boro/química , Compostos Azo/química , Diamante/química , Peróxido de Hidrogênio/química , Curtume , Técnicas Eletroquímicas , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Ferro/químicaRESUMO
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , América Latina , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análiseRESUMO
Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.
Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Titânio/química , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Poluentes Químicos da Água/química , Técnicas EletroquímicasRESUMO
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Acetaminofen , Animais , Peróxido de Hidrogênio/metabolismo , Oxirredução , Águas Residuárias , Água , Purificação da Água/métodosRESUMO
The development of heterogeneous Fenton-based electrochemical advanced oxidation processes is important for the removal of organic pollutants at industrial level in the near future. This work reports the application of heterogeneous photoelectro-Fenton (HPEF) with UVA light as an enhanced alternative to the more widespread heterogeneous electro-Fenton (HEF) process. The treatment of the antibiotic cephalexin using chalcopyrite as a sustainable catalyst was studied using an undivided IrO2/air-diffusion cell. XPS analysis showed the presence of Fe(III), Cu(I) and Cu(II) species on the surface. The amount of Fe2+ ions dissolved upon chalcopyrite exposure to continuous stirring and air bubbling was proportional to chalcopyrite content. In all cases, the occurrence of pH self-regulation to an optimum value near 3 was observed. The HEF and HPEF treatments of 100 mL of 50 mg L-1 cephalexin solutions with 0.050 M Na2SO4 have been studied with 1.0 g L-1 chalcopyrite at 50 mA cm-2. Comparative homogeneous EF and PEF with dissolved Fe2+ and Cu2+ catalysts were also performed. HPEF was the most effective process, which can be mainly explained by the larger production of homogeneous and heterogeneous OH and the photodegradation of the complexes formed between iron and organics. The effect of applied current and catalyst concentration on HPEF performance was assessed. Recycling experiments showed a long-term stability of chalcopyrite. Seven initial aromatics and six cyclic by-products of cephalexin were identified, and a plausible degradation route that also includes five final carboxylic acids is proposed.
Assuntos
Cefalexina , Poluentes Químicos da Água/análise , Antibacterianos , Cobre , Técnicas Eletroquímicas , Eletrodos , Compostos Férricos , Peróxido de Hidrogênio , OxirreduçãoRESUMO
The degradation of the antibiotic thiamphenicol has been studied by photoelectro-Fenton (PEF) process with UVA light using pyrite particles as catalyst source. Pyrite is a sulfide mineral that naturally acidifies the reaction medium and releases Fe2+, thus promoting the effective generation of OH from Fenton's reaction. The assays were made in an IrO2/air-diffusion cell, which yielded similar results to a boron-doped diamond (BDD)/air-diffusion one at a lower cost. In dark conditions, electro-Fenton (EF) process showed an analogous ability for drug removal, but mineralization was much poorer because of the large persistence of highly stable by-products. Their photolysis explained the higher performance of PEF. Conventional homogeneous PEF directly using dissolved Fe2+ exhibited a lower mineralization power. This suggests the occurrence of heterogeneous Fenton's reaction over the pyrite surface. The effect of current density and drug content on pyrite-catalyzed PEF performance was examined. The drug heteroatoms were gradually converted into SO42-, Cl- and NO3- ions. Nine aromatic derivatives and two dichloroaliphatic amines were identified by GC-MS, and five short-chain carboxylic acids were detected by ion-exclusion HPLC. A reaction route for thiamphenicol mineralization by PEF process with continuous H2O2 and Fe2+ supply on site is proposed.
Assuntos
Tianfenicol , Poluentes Químicos da Água , Catálise , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução , SulfetosRESUMO
Solutions with 0.65 mM of the antituberculosis drug isoniazid (INH) in 0.050 M Na2SO4 at pH 3.0 were treated by electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) processes using a cell with a BDD anode and a carbon-PTFE air-diffusion cathode. The influence of current density on degradation, mineralization rate, and current efficiency has been thoroughly evaluated in EF. The effect of the metallic catalyst (Fe2+ or Fe3+) and the formation of products like short-chain linear aliphatic carboxylic acids were assessed in PEF. Two consecutive pseudo-first-order kinetic regions were found using Fe2+ as catalyst. In the first region, at short time, the drug was rapidly oxidized by âOH, whereas in the second region, at longer time, a resulting Fe(III)-INH complex was much more slowly removed by oxidants. INH disappeared completely at 300 min by EF, attaining 88 and 94% mineralization at 66.6 and 100 mA cm-2, respectively. Isonicotinamide and its hydroxylated derivative were identified as aromatic products of INH by GC-MS and oxalic, oxamic, and formic acids were quantified by ion-exclusion HPLC. The PEF treatment of a real wastewater polluted with the drug led to slower INH and TOC abatements because of the parallel destruction of its natural organic matter content.
Assuntos
Antituberculosos/química , Eletrodos , Isoniazida/química , Fotoquímica/métodos , Poluentes Químicos da Água/química , Boro/química , Carbono , Diamante/química , Difusão , Cromatografia Gasosa-Espectrometria de Massas , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Oxirredução , Fotoquímica/instrumentação , Politetrafluoretileno , Soluções/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodosRESUMO
The main objective of this work is to demonstrate the viability of solar photoelectro-Fenton (SPEF) process to degrade pesticides in urban wastewater matrix, selecting the herbicide bentazon as a model molecule. In order to provide a correct assessment of the role of the different oxidants and catalysts involved, bentazon was comparatively treated by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and UVA-assisted EF (i.e., PEF) processes as well, either in sulfate or chloride media. Trials were made in a stirred tank reactor with an air-diffusion cathode and a boron-doped diamond (BDD), RuO2-based or Pt anode. In chlorinated matrices, the herbicide disappeared more rapidly using a RuO2-based anode because of the generated active chlorine. The best mineralization performance was always obtained using BDD due to its higher oxidation power, which allowed the complete destruction of refractory chloroderivatives. A concentration of 0.50â¯mM Fe2+ was found optimal to catalyze Fenton's reaction, largely enhancing the mineralization process under the action of OH. Among photo-assisted treatments, sunlight was proven superior to a UVA lamp to promote the photolysis of intermediates, owing to its greater UV irradiance and contribution of visible photons, although PEF also allowed achieving a large mineralization. In all cases, bentazon decay obeyed a pseudo-first-order kinetics. SPEF treatment in urban wastewater using BDD at only 16.6â¯mAâ¯cm-2 yielded 63.2% mineralization. A thorough, original reaction pathway for bentazon degradation is proposed, including seven non-chlorinated aromatics, sixteen chloroaromatics and two chloroaliphatics identified by GC-MS, most of them not previously reported in literature. Ion-exclusion HPLC allowed the detection of seven short-chain linear carboxylic acids.
Assuntos
Herbicidas , Poluentes Químicos da Água , Benzotiadiazinas , Técnicas Eletroquímicas , Eletrodos , Eletrólise , Peróxido de Hidrogênio , Oxirredução , Luz SolarRESUMO
Mixtures of monoazo Tartrazine, diazo Ponceau SS and triazo Direct Blue 71 dyes with 105â¯mgâ¯L-1 of total organic carbon (TOC) in 0.050â¯M Na2SO4 at pH 3.0 have been treated by solar photoelectro-Fenton (SPEF). Experiments were carried out in a 2.5â¯L pre-pilot plant with a Pt/air-diffusion cell coupled to a solar planar photoreactor. Comparative trials were made by anodic oxidation with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) to better understand the role of oxidizing agents. AO-H2O2 gave poor degradation due to the low oxidation ability of OH formed at the Pt anode and H2O2 produced at the cathode. Similar color removal was achieved in EF and SPEF because the main oxidant was OH formed in the bulk from Fenton's reaction. EF yielded partial mineralization by formation of molecules with high stability against OH. In contrast, these by-products were rapidly photolyzed under sunlight irradiation in SPEF, which was the most powerful treatment. Up to 8 linear final carboxylic acids were detected, along with the release of sulfate and ammonium ions. The effect of Fe2+ and azo dye concentrations, and current density over the SPEF performance was assessed. Total mineralization of azo dyes mixtures occurred when operating up to 105â¯mgâ¯L-1 TOC with 0.50â¯mM Fe2+ at 100â¯mAâ¯cm-2.
Assuntos
Compostos Azo/química , Tartrazina/química , Poluentes Químicos da Água/química , FotóliseRESUMO
The destruction of the herbicide chloramben in 0.050â¯M Na2SO4 solutions at natural pH has been studied by photoelectro-Fenton with UVA light (PEF). The trials were carried out in a cell equipped with an air-diffusion cathode for H2O2 generation and different electrocatalytic anodes, namely active IrO2-based and RuO2-based electrodes and non-active boron-doped diamond (BDD) and PbO2 ones. Similar removal rates were found regardless of the anode nature because the herbicide was mainly oxidized by OH formed from Fenton's reaction, which was enhanced by UVA-induced photo-Fenton reaction. The use of an IrO2-based anode led to almost total mineralization at high current density, as also occurred with the powerful BDD anode, since photoactive intermediates originated from OH-mediated oxidation were degraded under irradiation with UVA light. The good performance of the IrO2-based anode in PEF was confirmed at different current densities and herbicide concentrations. The presence of Cl- in the medium caused a slight deceleration of herbicide removal as well as mineralization inhibition, owing to the production of active chlorine with consequent formation of persistent chloroderivatives. Seven aromatic products along with oxalic and oxamic acids were identified in sulfate medium. Five aromatic derivatives were detected in Cl--containing matrix, corroborating the generation of organochlorine compounds. In secondary effluent, larger mineralization was achieved by PEF with a BDD anode due to its high oxidation ability to destroy the chloroderivatives, although an acceptable performance was also obtained using an IrO2-based anode.
Assuntos
Clorobenzoatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Boro , Clorobenzoatos/química , Diamante , Eletroquímica , Eletrodos , Herbicidas , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/químicaRESUMO
Electro-oxidation with electrogenerated H2O2 (EO-H2O2) was applied to treat acidic aqueous solutions of 4-aminoantipyrine (4-AA), a persistent drug metabolite of dipyrone, in sulfate medium. Trials were made using a boron-doped diamond anode in the presence of H2O2 electrogenerated on site. A 24 central composite design (CCD) was employed to evaluate the effect of four independent variables, namely current density (j), pH, 4-AA concentration and electrolysis time, on the percentages of degradation and mineralization, as well as on mineralization current efficiency (MCE). Predicted responses agreed with observed values, showing linear trendlines with good R2 and R2adj values. The degradation was optimum at j=77.5mAcm-2, pH3.5 and 62.5mgL-1 4-AA, leading to 63% and 99% removal after 3 and 7min, respectively. For those solutions, the largest mineralization was found at j=77.5mAcm-2, attaining 45% abatement at 175min. Low MCE values were obtained in all electrolyses. An initial route for 4-AA degradation is proposed based on one dimer and eleven aromatic and aliphatic intermediates detected in the treated solutions at pH3.5 by LC-MS. The initial 62.5mgL-1 solution at pH3.5 presented acute toxicity on Artemia salina larvae, with LC50=13.6mgL-1, being substantially reduced after 3 and 7min of EO-H2O2 at j=77.5mAcm-2 due to the formation of less toxic derivatives.
RESUMO
This study describes the performance of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes to degrade the herbicide tebuthiuron (TBH) in 0.050â¯M Na2SO4 at pHâ¯=â¯3.0. Experiments were performed in an undivided cell equipped with a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode that produces H2O2. Physisorbed hydroxyl radicals (M(OH)) generated from water oxidation at the anode and/or free OH formed from Fenton's reaction acted as main oxidants. All processes became much more effective using a BDD anode because of the higher oxidation power of BDD(OH). Sulfate and nitrate were the predominant ions released during TBH destruction. In both, EF and PEF treatments, two distinct kinetic regimes were observed, the first one corresponding to the oxidation of free TBH by OH and the second one to that of the Fe(III)-TBH complex by M(OH). The effect of Fe2+ and TBH concentrations on the kinetics of both regions has been examined. Moreover, a poor mineralization was reached with Pt anode, whereas almost total mineralization was attained by EF and PEF with BDD. Both processes showed analogous mineralization rates because the intermediates produced could not be photodegraded by UVA light. Gas chromatography-mass spectrometry analysis of electrolyzed solutions revealed the generation of eight heteroaromatics along with 1,3-dimethylurea, which have been included in a reaction pathway proposed for the initial degradation of TBH.
Assuntos
Técnicas Eletroquímicas/métodos , Compostos de Metilureia/química , Fotólise , Poluentes Químicos da Água/química , Boro/química , Eletrodos , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , SulfatosRESUMO
The degradation of solutions of the antibiotic levofloxacin (LVN) in sulfate medium at pH 3.0 has been investigated at pre-pilot scale by solar photoelectro-Fenton (SPEF) process. The flow plant included an FM01-LC filter-press cell equipped with a Ti|Pt anode and a three-dimensional-like air-diffusion cathode, connected to a compound parabolic collector as photoreactor and a continuous stirred tank under recirculation batch mode. The effect of volumetric flow rate on H2O2 electrogeneration from O2 reduction was assessed. Then, the influence of initial LVN concentration and Fe2+ concentration as catalyst on dissolved organic carbon (DOC) removal was thoroughly investigated. LVN was gradually mineralized by SPEF process, with faster DOC abatement at 0.50â¯mM Fe2+, yielding 100% after 360â¯minâ¯at applied cathodic potential of -0.30â¯V|SHE. The high mineralization current efficiency (MCE) and low specific energy consumption (ECDOC) revealed the extraordinary role of homogeneous hydroxyl radicals and natural UV light, which allowed the degradation of the antibiotic and its by-products with MCE values greater than 100%. Five cyclic by-products, N,N-diethylformamide and three short-chain linear carboxylic acids were detected by GC-MS and HPLC analyses. A parametric model to simulate the DOC decay versus electrolysis time was implemented for the SPEF pre-pilot flow plant, showing good agreement with experimental data.
Assuntos
Antibacterianos/análise , Peróxido de Hidrogênio/química , Ferro/química , Levofloxacino/análise , Modelos Teóricos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/efeitos da radiação , Catálise , Relação Dose-Resposta a Droga , Técnicas Eletroquímicas , Levofloxacino/efeitos da radiação , Projetos Piloto , Solubilidade , Fatores de Tempo , Poluentes Químicos da Água/efeitos da radiaçãoRESUMO
A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na2SO4 at pH 3.0 by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO2-based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. The anode material had little effect on the accumulated H2O2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H2O2. Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H2O2 and added Fe2+. The solution mineralization increased in the sequence EO-H2O2 < EF < PEF < SPEF regardless of the anode. The IrO2-based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl- enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability.
Assuntos
Anti-Infecciosos/química , Água Doce/química , Sulfametoxazol/química , Trimetoprima/química , Poluentes Químicos da Água/química , Boro/química , Diamante/química , Eletroquímica , Eletrodos , Compostos Férricos/química , Água Doce/análise , Peróxido de Hidrogênio/química , Oxirredução , Fotólise , Luz SolarRESUMO
A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H2O2 process had the lowest oxidation ability due to the slow reaction of intermediates with â¢OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional â¢OH formed between added Fe2+ and electrogenerated H2O2. The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H2O2, whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H2O2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe2+ and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.
Assuntos
Boro/química , Diamante/química , Inseticidas , Propoxur , Poluentes Químicos da Água , Inseticidas/análise , Inseticidas/química , Oxirredução , Propoxur/análise , Propoxur/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da ÁguaRESUMO
A 3.0 L solar flow plant with a Pt/air-diffusion (anode/cathode) cell, a solar photoreactor and a photocatalytic photoreactor filled with TiO2-coated glass spheres has been utilized to couple solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) for treating a 165mgL(-1) salicylic acid solution of pH 3.0. Organics were destroyed by OH radicals formed on the TiO2 photocatalyst and at the Pt anode during water oxidation and in the bulk from Fenton's reaction between added Fe(2+) and cathodically generated H2O2, along with the photolytic action of sunlight. Poor salicylic acid removal and mineralization were attained using SPC, anodic oxidation with electrogenerated H2O2 (AO-H2O2) and coupled AO-H2O2-SPC. The electro-Fenton process accelerated the substrate decay, but with low mineralization by the formation of byproducts that are hardly destroyed by OH. The mineralization was strongly increased by SPEF due to the photolysis of products by sunlight, being enhanced by coupled SPEF-SPC due to the additional oxidation by OH at the TiO2 surface. The effect of current density on the performance of both processes was examined. The most potent SPEF-SPC process at 150mAcm(-2) yielded 87% mineralization and 13% current efficiency after consuming 6.0AhL(-1). Maleic, fumaric and oxalic acids detected as final carboxylic acids were completely removed by SPEF and SPEF-SPC.
RESUMO
The degradation of 100 mL of 0.245 mM of the antibiotic ciprofloxacin in 0.05 M Na2SO4 at pH 3.0 has been studied by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF). Electrolyses were performed with a stirred tank reactor using either a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode. In EF, PEF and SPEF, ciprofloxacin was rapidly removed due to its oxidation with (â¢)OH formed from Fenton's reaction between added Fe(2+) and H2O2 generated at the cathode. The larger electrochemical incineration of the antibiotic was achieved by SPEF with BDD with 95% mineralization thanks to the additional attack by hydroxyl radicals formed from water oxidation at the BDD anode surface and the photolysis of final Fe(III)-oxalate and Fe(III)-oxamate species from sunlight. Up to 10 primary intermediates and 11 hydroxylated derivatives were identified by LC-MS, allowing the proposal of a reaction sequence for ciprofloxacin mineralization. A different behavior was found when the same antibiotic concentration was oxidized in a synthetic urine matrix with high urea content and a mixture of PO4(3-), SO4(2-) and Cl(-) ions. Since Fenton's reaction was inhibited in this medium, only EO and EO-H2O2 processes were useful for mineralization, being the organics mainly degraded by HClO formed from Cl(-) oxidation. The EO process with a BDD/stainless steel cell was found to be the most powerful treatment for the urine solution, yielding 96% ciprofloxacin removal and 98% mineralization after 360 min of electrolysis at optimum values of pH 3.0 and current density of 66.6 mA cm(-2). The evolution of released inorganic ions was followed by ion chromatography.
Assuntos
Ciprofloxacina/química , Técnicas Eletroquímicas , Sulfatos/química , Urina/química , Poluentes Químicos da Água/química , Antibacterianos/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia Líquida , Incineração , Espectrometria de Massas , Oxirredução , FotóliseRESUMO
Dairy wastewater is characterized by a high content of hardly biodegradable dissolved, colloidal, and suspended organic matter. This work firstly investigates the performance of two individual electrochemical treatments, namely electrocoagulation (EC) and electro-oxidation (EO), in order to finally assess the mineralization ability of a sequential EC/EO process. EC with an Al anode was employed as a primary pretreatment for the conditioning of 800 mL of wastewater. A complete reduction of turbidity, as well as 90 and 81% of chemical oxygen demand (COD) and total organic carbon (TOC) removal, respectively, were achieved after 120 min of EC at 9.09 mA cm(-2). For EO, two kinds of dimensionally stable anodes (DSA) electrodes (Ti/IrO2-Ta2O5 and Ti/IrO2-SnO2-Sb2O5) were prepared by the Pechini method, obtaining homogeneous coatings with uniform composition and high roughness. The (·)OH formed at the DSA surface from H2O oxidation were not detected by electron spin resonance. However, their indirect determination by means of H2O2 measurements revealed that Ti/IrO2-SnO2-Sb2O5 is able to produce partially physisorbed radicals. Since the characterization of the wastewater revealed the presence of indole derivatives, preliminary bulk electrolyses were done in ultrapure water containing 1 mM indole in sulfate and/or chloride media. The performance of EO with the Ti/IrO2-Ta2O5 anode was evaluated from the TOC removal and the UV/Vis absorbance decay. The mineralization was very poor in 0.05 M Na2SO4, whereas it increased considerably at a greater Cl(-) content, meaning that the oxidation mediated by electrogenerated species such as Cl2, HClO, and/or ClO(-) competes and even predominates over the (·)OH-mediated oxidation. The EO treatment of EC-pretreated dairy wastewater allowed obtaining a global 98 % TOC removal, decreasing from 1,062 to <30 mg L(-1).
Assuntos
Alumínio/química , Indústria de Laticínios , Técnicas Eletroquímicas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Cloretos/química , Eletrodos , Eletrólise , Peróxido de Hidrogênio/análise , Indóis , Oxirredução , Sulfatos , Titânio/química , Poluentes Químicos da Água/análiseRESUMO
Here, the synergetic effect of coupling solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) on the mineralization of 200mL of a 20mg L(-1) atrazine solution, prepared from the commercial herbicide Gesaprim, at pH 3.0 was studied. Uniform, homogeneous and adherent anatase-TiO2 films onto glass spheres of 5mm diameter were prepared by the sol-gel dip-coating method and used as catalyst for SPC. However, this procedure yielded a poor removal of the substrate because of the low oxidation ability of positive holes and OH formed at the catalyst surface to destroy it. Atrazine decay was improved using anodic oxidation (AO), electro-Fenton (EF), SPEF and coupled SPEF-SPC at 100mA. The electrolytic cell contained a boron-doped diamond (BDD) anode and H2O2 was generated at a BDD cathode fed with an air flow. The removal and mineralization of atrazine increased when more oxidizing agents were generated in the sequence AOAssuntos
Atrazina/química
, Herbicidas/química
, Processos Fotoquímicos
, Atrazina/análise
, Boro/química
, Diamante/química
, Eletrodos
, Eletrólise
, Compostos Férricos/química
, Herbicidas/análise
, Peróxido de Hidrogênio/química
, Ferro/química
, Oxirredução
, Luz Solar
, Triazinas/química
, Eliminação de Resíduos Líquidos/métodos