Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Epilepsy Behav ; 154: 109726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513571

RESUMO

BACKGROUND: A pathogenic variant in SCN1A can result in a spectrum of phenotypes, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS + ) syndrome. Dravet syndrome (DS) is associated with refractory seizures, developmental delay, intellectual disability (ID), motor impairment, and challenging behavior(1,2). GEFS + is a less severe phenotype in which cognition is often normal and seizures are less severe. Challenging behavior largely affects quality of life of patients and their families. This study describes the profile and course of the behavioral phenotype in patients with SCN1A-related epilepsy syndromes, explores correlations between behavioral difficulties and potential risk factors. METHODS: Data were collected from questionnaires, medical records, and semi-structured interviews. Behavior difficulties were measured using the Adult/Child Behavior Checklist (C/ABCL) and Adult self-report (ASR). Other questionnaires included the Pediatric Quality of Life Inventory (PedsQL), the Functional Mobility Scale (FMS) and the Sleep Behavior Questionnaire by Simonds & Parraga (SQ-SP). To determine differences in behavioral difficulties longitudinally, paired T-tests were used. Pearson correlation and Spearman rank test were used in correlation analyses and multivariable regression analyses were employed to identify potential risk factors. RESULTS: A cohort of 147 participants, including 107 participants with DS and 40 with genetic epilepsy with febrile seizures plus (GEFS + ), was evaluated. Forty-six DS participants (43.0 %) and three GEFS + participants (7.5 %) showed behavioral problems in the clinical range on the A/CBCL total problems scale. The behavioral profile in DS exists out of withdrawn behavior, aggressive behavior, and attention problems. In DS patients, sleep disturbances (ß = 1.15, p < 0.001) and a lower age (ß = -0.21, p = 0.001) were significantly associated with behavioral difficulties. Between 2015 and 2022, behavioral difficulties significantly decreased with age (t = -2.24, CI = -6.10 - -0.15, p = 0.04) in DS participants aging from adolescence into adulthood. A decrease in intellectual functioning (ß = 3.37, p = 0.02) and using less antiseizure medications in 2022 than in 2015, (ß = -1.96, p = 0.04), were identified as possible risk factors for developing (more) behavioral difficulties. CONCLUSIONS: These findings suggest that, in addition to epilepsy, behavioral difficulties are a core feature of the DS phenotype. Behavioral problems require personalized management and treatment strategies. Further research is needed to identify effective interventions.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Masculino , Feminino , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto , Criança , Adolescente , Adulto Jovem , Pré-Escolar , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/psicologia , Epilepsias Mioclônicas/complicações , Qualidade de Vida , Síndromes Epilépticas/genética , Síndromes Epilépticas/psicologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/psicologia , Transtornos do Neurodesenvolvimento/etiologia , Convulsões Febris/genética , Convulsões Febris/psicologia , Convulsões Febris/complicações , Comportamento Problema/psicologia , Epilepsia/genética , Epilepsia/psicologia , Epilepsia/complicações
2.
Orphanet J Rare Dis ; 19(1): 49, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326858

RESUMO

BACKGROUND: Fahr's disease and syndrome are rare disorders leading to calcification of the small arteries in the basal ganglia of the brain, resulting in a wide range of symptoms comprising cognitive decline, movement disorders and neuropsychiatric symptoms. No disease-modifying therapies are available. Studies have shown the potential of treatment of ectopic vascular calcifications with bisphosphonates. This paper describes the rationale and design of the CALCIFADE trial which evaluates the effects of etidronate in patients with Fahr's disease or syndrome. METHODS: The CALCIFADE trial is a randomised, placebo-controlled, double-blind trial which evaluates the effects of etidronate 20 mg/kg during 12 months follow-up in patients aged ≥ 18 years with Fahr's disease or syndrome. Etidronate and placebo will be administered in capsules daily for two weeks on followed by ten weeks off. The study will be conducted at the outpatient clinic of the University Medical Center Utrecht, the Netherlands. The primary endpoint is the change in cognitive functioning after 12 months of treatment. Secondary endpoints are the change in mobility, neuropsychiatric symptoms, volume of brain calcifications, dependence in activities of daily living, and quality of life. RESULTS: Patient recruitment started in April 2023. Results are expected in 2026 and will be disseminated through peer-reviewed journals as well as presentations at national and international conferences. CONCLUSIONS: Fahr's disease and syndrome are slowly progressive disorders with a negative impact on a variety of health outcomes. Etidronate might be a new promising treatment for patients with Fahr's disease or syndrome. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05662111. Registered 22 December 2022, https://clinicaltrials.gov/ct2/show/NCT01585402 .


Assuntos
Doenças dos Gânglios da Base , Calcinose , Ácido Etidrônico , Doenças Neurodegenerativas , Humanos , Ácido Etidrônico/uso terapêutico , Atividades Cotidianas , Qualidade de Vida , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/psicologia , Encéfalo
3.
J Clin Med ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337525

RESUMO

(1) Background: Primary Familial Brain Calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcifications of the basal ganglia and other intracranial areas. Many patients experience symptoms of motor dysfunction and cognitive disorders. The aim of this study was to investigate the association between the amount and location of intracranial calcifications with these symptoms. (2) Methods: Patients with suspected PFBC referred to our outpatient clinic underwent a clinical work-up. Intracranial calcifications were visualized on Computed Tomography (CT), and a Total Calcification Score (TCS) was constructed. Logistic and linear regression models were performed. (3) Results: Fifty patients with PFBC were included in this study (median age 64.0 years, 50% women). Of the forty-one symptomatic patients (82.0%), 78.8% showed motor dysfunction, and 70.7% showed cognitive disorders. In multivariate analysis, the TCS was associated with bradykinesia/hypokinesia (OR 1.07, 95%-CI 1.02-1.12, p < 0.01), gait ataxia (OR 1.06, 95%-CI 1.00-1.12, p = 0.04), increased fall risk (OR 1.04, 95%-CI 1.00-1.08, p = 0.03), and attention/processing speed disorders (OR 1.06, 95%-CI 1.01-1.12, p = 0.02). Calcifications of the lentiform nucleus and subcortical white matter were associated with motor and cognitive disorders. (4) Conclusions: cognitive and motor symptoms are common among patients with PFBC, and there is an association between intracranial calcifications and these symptoms.

4.
PLoS One ; 18(9): e0290013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672513

RESUMO

Colour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family. For three family members with developmental colour agnosia and three unaffected family members CGH-array analysis and exome sequencing was performed, and linkage analysis was carried out using DominantMapper, resulting in the identification of 19 cosegregating chromosomal regions. Whole exome sequencing resulted in 11 rare coding variants present in all affected family members with developmental colour agnosia and absent in unaffected members. These variants affected genes that have been implicated in neural processes and functions (CACNA2D4, DDX25, GRINA, MYO15A) or that have an indirect link to brain function, development or disease (MAML2, STAU1, TMED3, RABEPK), and a remaining group lacking brain expression or involved in non-neural traits (DEPDC7, OR1J1, OR8D4). Although this is an explorative study, the small set of candidate genes that could serve as a starting point for unravelling mechanisms of higher level cognitive functions and cortical specialization, and disorders therein such as developmental colour agnosia.


Assuntos
Agnosia , Humanos , Agnosia/genética , Encéfalo , Cor , Proteínas do Citoesqueleto , Proteínas de Ligação a RNA , Proteínas de Transporte Vesicular
5.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501353

RESUMO

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Epilepsia Generalizada , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Lactente , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/genética , Fácies , Proteínas Repressoras/genética , Fatores de Transcrição
6.
Drug Discov Today ; 28(10): 103688, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356616

RESUMO

N-of-1 strategies can provide high-quality evidence of treatment efficacy at the individual level and optimize evidence-based selection of off-label treatments for patients with rare diseases. Given their design characteristics, n-of-1 strategies are considered to lay at the intersection between medical research and clinical care. Therefore, whether n-of-1 strategies should be governed by research or care regulations remains a debated issue. Here, we delineate differences between medical research and optimized clinical care, and distinguish the regulations which apply to either. We also set standards for responsible optimized clinical n-of-1 strategies with (off-label) treatments for rare diseases. Implementing clinical n-of-1 strategies as defined here could aid in optimized treatment selection for such diseases.


Assuntos
Doenças Raras , Humanos , Doenças Raras/tratamento farmacológico , Seleção de Pacientes , Resultado do Tratamento
7.
Epilepsy Behav ; 138: 108978, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495797

RESUMO

BACKGROUND: Dravet syndrome (DS) is a monogenic syndrome associated with SCN1A mutations in the majority of patients and characterized by devastating epilepsy, that may be life-threatening. Aside from refractory seizures, core symptoms of DS include behavioral difficulties, developmental delay, cognitive impairment, and motor dysfunction. Previous DS research has mainly focused on epileptic seizures and pharmacological management and less on behavioral difficulties. This study aims to explore the lived experience of parents supporting a child with DS, with a focus on behavioral aspects. METHODS: We performed a qualitative study using focus groups and following the consolidated criteria for reporting qualitative research (COREQ) guidelines. We organized three focus groups with parents of children and adults with DS and used a pre-defined topic list of open questions, similar for each focus group to ensure comparability. The focus groups were video recorded, transcribed, and anonymized. Data were analyzed using an iterative coding process where codes were sorted into themes. Differences in coding among the researchers were discussed until a consensus was reached. RESULTS: In total, twenty parents (mothers only) participated in the study. The age of children with DS ranged between 3 to 22 years with a mean age of 11.8 years. A range of behavioral difficulties emerged from the thematic analysis. Overall, the most commonly mentioned behavioral difficulties were aggression, dangerous behavior, impulsivity, hyperactivity, routinized and compulsive habits. Our results showed different behavior per age group, with more externalizing behaviors such as aggression and impulsivity in children aged 3-13 years; and more internalizing behavior such as routinized and compulsive habits in adolescents and young adults (14-22 years). This results in a different kind of support these families need and should be acknowledged when in consult with a healthcare professional. Parents reported that challenging behavior was a source of stress and impacted negatively on their family's quality of life. Parents reported feeling alone in their search for solutions, and many explored options outside the traditional medical context. CONCLUSION: Our results suggest that the challenging behavior associated with DS leads to a huge burden of care. Healthcare professionals working with DS patients may need to develop shared decision-making strategies that take into account challenging behavior.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Adulto Jovem , Criança , Humanos , Adolescente , Qualidade de Vida , Epilepsias Mioclônicas/diagnóstico , Epilepsia/diagnóstico , Convulsões/psicologia , Pais
8.
Neuromuscul Disord ; 32(6): 527-532, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35641352

RESUMO

We describe the shared clinical, biochemical, radiological and myopathological characteristics of four patients with distal spinal muscular atrophy (dSMA) caused by vaccinia-related kinase 1 (VRK1) variants and provide a review of the literature on phenotype-genotype correlations in VRK1-related disease. The clinical phenotype was characterized by adult-onset dSMA with predominant calf muscle involvement and mildly elevated serum creatinine kinase (CK) levels. Muscle imaging showed predominant atrophy and fatty replacement of calf muscles. We identified the novel compound heterozygous variants c.607C>T (p.Arg203Trp) and c.858G>T (p.Met286Ile) in two siblings with adult-onset dSMA. Additionally, two unrelated patients both carried the known c.583T>G (p.Leu195Val) VRK1 variant, with either c.197C>G (p.Ala66Gly) or c.701A>G (p.Asn234Ser) as a second variant. We conclude that compound heterozygous VRK1 variants cause distal spinal muscular atrophy with predominant posterior leg muscle involvement.


Assuntos
Perna (Membro) , Atrofia Muscular Espinal , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular , Atrofia Muscular Espinal/genética , Linhagem , Proteínas Serina-Treonina Quinases
9.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34930816

RESUMO

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Assuntos
Proteínas Argonautas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Aminoácidos/genética , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro , Proteínas Argonautas/genética
10.
Neurol Genet ; 7(6): e613, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34790866

RESUMO

BACKGROUND AND OBJECTIVES: Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. METHODS: Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. RESULTS: A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. DISCUSSION: The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.

11.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
12.
Eur J Paediatr Neurol ; 32: 128-135, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33971557

RESUMO

Genetic testing and counselling are increasingly important in epilepsy care, aiming at finding a diagnosis, understanding aetiology and improving treatment and outcome. The psychological impact of genetic counselling from patients' or parents' perspectives is, however, unknown. We studied the counselee-reported outcome of genetic counselling before and after genetic testing for epilepsy by evaluating empowerment - a key outcome goal of counselling reflecting cognitive, decisional and behavioural control, emotional regulation and hope - and anxiety. We asked patients or their parents (for those <16 years or intellectually disabled) referred for genetic testing for epilepsy in two university hospitals between June 2014 and 2017 to complete the same two questionnaires at three timepoints: before and after pre-test counselling and after post-test counselling. Empowerment was measured with the Genetic Counselling Outcome Scale (GCOS-18); anxiety with the short State Trait Anxiety Inventory (STAI-6). A total of 63 participants (55 parents with the age of 29-66 years; 8 patients with the age of 21-42 years) were included in our study. Empowerment significantly increased during the genetic counselling trajectory with a medium effect size (p < 0.001, d = 0.57). A small but significant increase in empowerment was already seen after pre-test counselling (p = 0.038, d = 0.29). Anxiety did not change significantly during the counselling trajectory (p = 0.223, d = -0.24). Our study highlights that patients with epilepsy or their parents show a clinically relevant increase in empowerment after genetic counselling. Empowerment was already increased after pre-test counselling, suggesting the importance of counselling before initiating genetic testing for epilepsy. However, individual differences in changes in empowerment and anxiety were seen, suggesting that counselling could be further improved, based on individual needs.


Assuntos
Ansiedade/psicologia , Epilepsia/psicologia , Aconselhamento Genético/psicologia , Participação do Paciente/psicologia , Adulto , Idoso , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Pais/psicologia , Participação do Paciente/métodos , Inquéritos e Questionários , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-33829936

RESUMO

The kinesin family member 5A (KIF5A) motor domain variants are typically associated with hereditary spastic paraplegia (HSP) or Charcot-Marie-Tooth 2 (CMT2), while KIF5A tail variants predispose to amyotrophic lateral sclerosis (ALS) and neonatal intractable myoclonus. Variants within the stalk domain of KIF5A are relatively rare. We describe a family of three patients with a complex HSP phenotype and a likely pathogenic KIF5A stalk variant. More family members were reported to have walking difficulties. When reviewing the literature on KIF5A stalk variants, we found 22 other cases. The phenotypes varied with most cases having (complex) HSP/CMT2 or ALS. Symptom onset varied from childhood to adulthood and common additional symptoms for HSP are involvement of the upper limbs, sensorimotor polyneuropathy, and foot deformities. We conclude that KIF5A variants lead to a broad clinical spectrum of disease. Phenotype distribution according to variants in specific domains occurs often in the motor and tail domain but are not definite. However, variants in the stalk domain are not bound to a specific phenotype.


Assuntos
Esclerose Lateral Amiotrófica , Paraplegia Espástica Hereditária , Adolescente , Criança , Estudos de Associação Genética , Humanos , Cinesinas/genética , Mutação/genética , Fenótipo , Paraplegia Espástica Hereditária/genética , Adulto Jovem
15.
Genet Med ; 23(4): 653-660, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33299146

RESUMO

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína 25 Associada a Sinaptossoma/genética , Pré-Escolar , Epilepsia/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo
16.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
17.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721402

RESUMO

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Assuntos
Carcinogênese/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Pré-Escolar , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/fisiopatologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Sequenciamento do Exoma , Proteínas ras/genética
18.
Genet Med ; 22(8): 1413-1417, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366965

RESUMO

PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Fenótipo , Sequenciamento do Exoma
19.
Ann Clin Transl Neurol ; 7(4): 462-473, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32207228

RESUMO

OBJECTIVES: We ascertained the prevalence of ictal arrhythmias to explain the high rate of sudden unexpected death in epilepsy (SUDEP) in Dravet syndrome (DS). METHODS: We selected cases with clinical DS, ≥6 years, SCN1A mutation, and ≥1 seizure/week. Home-based ECG recordings were performed for 20 days continuously. Cases were matched for age and sex to two epilepsy controls with no DS and ≥1 major motor seizure during video-EEG. We determined the prevalence of peri-ictal asystole, bradycardia, QTc changes, and effects of convulsive seizures (CS) on heart rate, heart rate variability (HRV), and PR/QRS. Generalized estimating equations were used to account for multiple seizures within subjects, seizure type, and sleep/wakefulness. RESULTS: We included 59 cases. Ictal recordings were obtained in 45 cases and compared to 90 controls. We analyzed 547 seizures in DS (300 CS) and 169 in controls (120 CS). No asystole occurred. Postictal bradycardia was more common in controls (n = 11, 6.5%) than cases (n = 4, 0.7%; P = 0.002). Peri-ictal QTc-lengthening (≥60ms) occurred more frequently in DS (n = 64, 12%) than controls (n = 8, 4.7%, P = 0.048); pathologically prolonged QTc was rare (once in each group). In DS, interictal HRV was lower compared to controls (RMSSD P = 0.029); peri-ictal values did not differ between the groups. Prolonged QRS/PR was rare and more common in controls (QRS: one vs. none; PR: three vs. one). INTERPRETATION: We did not identify major arrhythmias in DS which can directly explain high SUDEP rates. Peri-ictal QTc-lengthening was, however, more common in DS. This may reflect unstable repolarization and an increased propensity for arrhythmias.


Assuntos
Arritmias Cardíacas/complicações , Arritmias Cardíacas/diagnóstico , Epilepsias Mioclônicas/complicações , Morte Súbita Inesperada na Epilepsia/etiologia , Adolescente , Adulto , Arritmias Cardíacas/epidemiologia , Criança , Eletrocardiografia , Eletroencefalografia , Epilepsias Mioclônicas/epidemiologia , Feminino , Humanos , Masculino , Prevalência , Morte Súbita Inesperada na Epilepsia/epidemiologia , Adulto Jovem
20.
Mol Genet Genomic Med ; 8(4): e1103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032478

RESUMO

BACKGROUND: SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS: 87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS: Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION: Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.


Assuntos
Síndromes Epilépticas/genética , Genes Modificadores , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Síndromes Epilépticas/patologia , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...