Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1102, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232964

RESUMO

Interstitials, e.g., C, N, and O, are attractive alloying elements as small atoms on interstitial sites create strong lattice distortions and hence substantially strengthen metals. However, brittle ceramics such as oxides and carbides usually form, instead of solid solutions, when the interstitial content exceeds a critical yet low value (e.g., 2 at.%). Here we introduce a class of massive interstitial solid solution (MISS) alloys by using a highly distorted substitutional host lattice, which enables solution of massive amounts of interstitials as an additional principal element class, without forming ceramic phases. For a TiNbZr-O-C-N MISS model system, the content of interstitial O reaches 12 at.%, with no oxides formed. The alloy reveals an ultrahigh compressive yield strength of 4.2 GPa, approaching the theoretical limit, and large deformability (65% strain) at ambient temperature, without localized shear deformation. The MISS concept thus offers a new avenue in the development of metallic materials with excellent mechanical properties.

2.
J R Soc Interface ; 10(89): 20130591, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24068175

RESUMO

Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Desinfecção/métodos , Gases em Plasma/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/efeitos da radiação , Bacillus subtilis/ultraestrutura , Dano ao DNA , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/efeitos da radiação , Genes Reporter , Microscopia Eletrônica de Varredura , Fótons , Raios Ultravioleta
3.
Phys Rev Lett ; 100(15): 155502, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518121

RESUMO

We present differences in the mechanical behavior of nanoscale gold and molybdenum single crystals. A significant strength increase is observed as the size is reduced to 100 nm. Both nanocrystals exhibit discrete strain bursts during plastic deformation. We postulate that they arise from significant differences in the dislocation behavior. Dislocation starvation is the predominant mechanism of plasticity in nanoscale fcc crystals, while junction formation and hardening characterize bcc plasticity. A statistical analysis of strain bursts is performed as a function of size and compared with stochastic models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...