Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930801

RESUMO

The growth of Lactobacillus plantarum, a member of the Lactobacillus genus, which plays a crucial role in the bacterial microbiome of the gut, is significantly influenced by manganese ions. They can be safely delivered to the intestines by exploiting the chelating abilities of lactoferrin. The aim of this work was to encapsulate lactoferrin saturated with manganese ions (MnLf) in a system based on the Eudragit® RS polymer to protect protein from degradation and manganese release in the gastric environment. The entrapment efficiency was satisfactory, reaching about 95%, and most importantly, manganese ions were not released during microparticles (MPs) formation. The release profile of the protein from the freshly prepared MPs was sustained, with less than 15% of the protein released within the first hour. To achieve similar protein release efficiency, freeze-drying was carried out in the presence of 10% (w/v) mannitol as a cryoprotectant for MPs frozen at -20 °C. MPs with encapsulated MnLf exhibited prebiotic activity towards Lactobacillus plantarum. More importantly, the presence of equivalent levels of manganese ions in free form in the medium, as well as chelating by lactoferrin encapsulated in MPs, had a similar impact on stimulating bacterial growth. This indicates that the bioavailability of manganese ions in our prepared system is very good.


Assuntos
Lactobacillus plantarum , Lactoferrina , Manganês , Probióticos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Manganês/química , Lactoferrina/química , Íons , Liofilização
2.
Front Chem ; 12: 1371637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638879

RESUMO

This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][trans-RuIIICl4(dmso)(Isq)] (1) and [H2Ind][trans-RuIIICl4(dmso)(HInd)] (2) (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, cis-[RuCl2(dmso)4] (c) and trans-[RuCl2(dmso)4] (t), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [H2Ind][trans-RuCl4(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands. In the case of the 2-HL adduct, two distinct metalation sites: (i) Arg107, Arg113 and (ii) Gln127, Gln129, were identified. Crystallographic data were supported by studies of the interaction of 1 and 2 with HEWL in an aqueous solution. Hydrolytic stability studies revealed that both complexes 1 and 2 liberate the N-heterocyclic ligand under crystallization-like conditions (pH 4.5) as well as under physiological pH conditions, and this process is not significantly affected by the presence of HEWL. A comparative examination of nine crystal structures of Ru complexes with lysozyme, obtained through soaking and co-crystallization experiments, together with in-solution studies of the interaction between 1 and 2 with HEWL, indicates that the hydrolytic release of the N-heterocyclic ligand is one of the critical factors in the interaction between Ru complexes and lysozyme. This understanding is crucial in shedding light on the tendency of Ru complexes to target diverse metalation sites during the formation and in the final forms of the adducts with proteins.

3.
Dalton Trans ; 53(3): 966-985, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38054338

RESUMO

Despite the enormous efforts made over the past two decades to develop metallodrugs and nanocarriers for metallodrug delivery, there are still few precise strategies that aim to optimize the design of both metallodrugs and metallodrug carriers jointly in a concerted effort. In this work, three half-sandwich ruthenium(II) complexes with pyridylimidazo[1,5-a]pyridine ligand functionalized with polycyclic aromatic moiety (Ru(nap), Ru(ant), Ru(pyr)) are evaluated as possible anticancer candidates and polydiacetylene (PDA)-coated amino-functionalized mesoporous silica nanoparticles (AMSNs) are designed as a functional nanocarrier for drug delivery. Ru(pyr) exhibits higher cytotoxicity in HT-29 colorectal cancer cells compared to other complexes and cis-platin, but it does not exhibit better cellular uptake. Ru(pyr) is found to be preferentially accumulated in plasma, mitochondria, and ER-Golgi membrane. The complex induces cell cycle arrest in the G0/G1 phase, while higher concentrations cause programmed cell death via apoptosis. Ru(pyr) influences cancer cell adhesion property and acts as an antioxidant in HT-29 cells. In order to modulate the anticancer potency of Ru(pyr), AMSNs are used to encapsulate the complex, and then diacetylene self-assembly is allowed to deposit on the surface of the nanoparticles. Subsequently, the nanoparticles undergo topopolymerization, which results in π-conjugated PDA-Ru(pyr)@AMSNs. Owing to the ene-yne polymeric skeleton in the backbone, the non-fluorescent AMSNs turn into red-emissive particles, which are exploited for cell imaging applications. The release profile analysis reveals that such a π-conjugated polymer prevents the premature release of the complex from porous silica nanoparticles with the accelerated release of the complex in an acidic medium compared to physiological conditions. The PDA gatekeepers have also been proven to enhance the cellular internalization of Ru(pyr) with slow continuous release from the nanoformulation. Zebrafish embryo toxicity analysis suggests that the PDA-coated nanocarriers could be suitable candidates for in vivo investigations.


Assuntos
Antineoplásicos , Polímero Poliacetilênico , Rutênio , Animais , Linhagem Celular Tumoral , Peixe-Zebra , Sistemas de Liberação de Medicamentos , Polímeros , Dióxido de Silício/farmacologia , Rutênio/farmacologia , Antineoplásicos/farmacologia
4.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764553

RESUMO

Lactoferrin (Lf) is a globular glycoprotein found mainly in milk. It has a very high affinity for iron(III) ions, and its fully saturated form is called holoLf. The antimicrobial, antiviral, anticancer, and immunomodulatory properties of Lf have been studied extensively for the past two decades. However, to demonstrate therapeutic benefits, Lf has to be efficiently delivered to the intestinal tract in its structurally intact form. This work aimed to optimize the encapsulation of holoLf in a system based on the versatile Eudragit® RS polymer to protect Lf against the proteolytic environment of the stomach. Microparticles (MPs) with entrapped holoLf were obtained with satisfactory entrapment efficiency (90-95%), high loading capacity (9.7%), and suitable morphology (spherical without cracks or pores). Detailed studies of the Lf release from the MPs under conditions that included simulated gastric or intestinal fluids, prepared according to the 10th edition of the European Pharmacopeia, showed that MPs partially protected holoLf against enzymatic digestion and ionic iron release. The preincubation of MPs loaded with holoLf under conditions simulating the stomach environment resulted in the release of 40% of Lf from the MPs. The protein released was saturated with iron ions at 33%, was structurally intact, and its iron scavenging properties were preserved.

5.
J Med Chem ; 65(15): 10459-10470, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895090

RESUMO

The effect of polypyridyl Ru(II) complexes on the ability of cancer cells to migrate and invade, two features important in the formation of metastases, is evaluated. In vitro studies are carried out on breast cancer cell lines, MDA-MB-231 and MCF-7, as well as melanoma cell lines A2058 and A375. Three Ru(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and as a third ligand 2,2'-bipyridine (bpy), or its derivative with either 4-[3-(2-nitro-1H-imidazol-1-yl)propyl] (bpy-NitroIm), or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moiety attached are examined. The low sub-toxic doses of the studied compounds greatly affected the cancer cells by inhibiting cell detachment, migration, invasion, transmigration, and re-adhesion, as well as increasing cell elasticity. The molecular studies revealed that the Ru(II) polypyridyl complexes impact the activity of the selected integrins and upregulate the expression of focal adhesion components such as vinculin and paxillin, leading to an increased number of focal adhesion contacts.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , 2,2'-Dipiridil , Antineoplásicos/farmacologia , Adesão Celular , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Rutênio/farmacologia
6.
ACS Appl Bio Mater ; 5(7): 3241-3256, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35786838

RESUMO

The organometallic compounds are prospective candidates in the row of developing metallochemotherapeutics with the aim of overcoming the limitations of platinum drugs. In order to explore the anticancer properties of organometallic compounds with the natural medicines, two Ru(II)-p-cymene complexes containing the natural products, viz., 6-gingerol (6G) and benzylated-6-gingerdione (B-6GD) have been synthesized and characterized well. The phenolic group of the Ru(6G) complex facilitates its higher cell-free antioxidant activity than its analogue complex. Also, the same complex shows higher cytotoxicity toward A549 lung and HeLa-S3 cervical cancer cells than the Ru(B-6GD) complex but lower cytotoxicity toward A2058 metastatic melanoma cancer cells. Both complexes are shown to easily accumulate in melanoma cancer cells, and their degree of cytotoxicity in the same cells is found to be positively correlated with cell uptake. The cytotoxicity of complexes arises from their intracellular activity, mainly due to the induction of singlet oxygen production in cancer cells. The subcellular fractionation study shows that mitochondria and ER-Golgi membranes might be their predominant targets. Also, the mechanistic investigation revealed that Ru(B-6GD) induces caspase-dependent non-apoptotic cell death whereas Ru(6G) can induce caspase-independent non-apoptotic cell death. Furthermore, both complexes are found to moderately alter the adhesion properties of cancer cells, which is beneficial for antimetastatic treatment. Despite the potential pharmacological activity, Ru(6G) is encapsulated into polymer-supported liposomes to reduce its toxicity and further improve its anticancer potency. The π-conjugated yne-ene chain of polydiacetylene aids in the development of a stable nanoformulation, which achieved a slow release of the complex. Most importantly, the cancer cell uptake of the liposome-encapsulated Ru(6G) complex is 20 times enhanced and the total ROS formation in cancer cells is significantly increased compared to the non-encapsulated complex. However, the nanoformulation does not alter the antimetastatic potency of the encapsulated complex.


Assuntos
Antineoplásicos , Produtos Biológicos , Melanoma , Compostos Organometálicos , Rutênio , Zingiber officinale , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cimenos , Zingiber officinale/metabolismo , Humanos , Lipossomos/farmacologia , Estrutura Molecular , Compostos Organometálicos/farmacologia , Estudos Prospectivos , Rutênio/farmacologia
7.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887054

RESUMO

The use of polypyridyl Ru complexes to inhibit metastasis is a novel approach, and recent studies have shown promising results. We have reported recently that Ru (II) complexes gathering two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and the one being 2,2'-bipyridine (bpy) or its derivative with a 4-[3-(2-nitro-1H-imidazol-1-yl)propyl (bpy-NitroIm) or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moieties can alter the metastatic cascade, among others, by modulating cell adhesion properties. In this work, we show further studies of this group of complexes by evaluating their effect on HMEC-1 endothelial cells. While all the tested complexes significantly inhibited the endothelial cell migration, Ru-bpy additionally interrupted the pseudovessels formation. Functional changes in endothelial cells might arise from the impact of the studied compounds on cell elasticity and expression of proteins (vinculin and paxillin) involved in focal adhesions. Furthermore, molecular studies showed that complexes modulate the expression of cell adhesion molecules, which has been suggested to be one of the factors that mediate the activation of angiogenesis. Based on the performed studies, we can conclude that the investigated polypyridyl Ru (II) complexes can deregulate the functionality of endothelial cells which may lead to the inhibition of angiogenesis.


Assuntos
Complexos de Coordenação , Neoplasias , Rutênio , 2,2'-Dipiridil , Complexos de Coordenação/farmacologia , Células Endoteliais , Humanos , Ligantes , Fenantrolinas , Rutênio/farmacologia
8.
Cancers (Basel) ; 14(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681666

RESUMO

Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off-on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.

9.
Dalton Trans ; 51(5): 1888-1900, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018930

RESUMO

The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 µM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.


Assuntos
Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fenantrolinas/química , Compostos de Rutênio/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Sistema Livre de Células , Humanos , Peróxido de Hidrogênio , Camundongos , Modelos Moleculares , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Compostos de Rutênio/química
10.
J Inorg Biochem ; 226: 111652, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741931

RESUMO

In recent years, Ru polypyridyl complexes have been intensively studied for their anticancer activity. The vast majority of research focuses on assessing their cytotoxic activity, as well as targeting cancer cells with them. Since the formation of metastases poses a greater risk than primary tumors, scientists recently began evaluating these compounds as potential metastasis inhibitors. This review highlights the latest achievements in this field with particular attention to the identification of the target proteins responsible for such activity. Cell migration, invasion, and adhesion are key components of metastasis, therefore understanding how they are affected by Ru polypyridyl complexes is of great importance. KEYWORDS: Ruthenium polypyridyl complexes Antimetastatic Migration Invasion Adhesion Metalloproteinases.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Piridinas , Rutênio , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Piridinas/química , Piridinas/uso terapêutico , Rutênio/química , Rutênio/uso terapêutico
11.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638839

RESUMO

One of the consequences of long-term exposure to air pollutants is increased mortality and deterioration of life parameters, especially among people diagnosed with cardiovascular diseases (CVD) or impaired respiratory system. Aqueous soluble inorganic components of airborne particulate matter containing redox-active transition metal ions affect the stability of S-nitrosothiols and disrupt the balance in the homeostasis of nitric oxide. Blood plasma's protective ability against the decomposition of S-nitrosoglutathione (GSNO) under the influence of aqueous PM extract among patients with exacerbation of heart failure and coronary artery disease was studied and compared with a group of healthy volunteers. In the environment of CVD patients' plasma, NO release from GSNO was facilitated compared to the plasma of healthy controls, and the addition of ascorbic acid boosted this process. Model studies with albumin revealed that the amount of free thiol groups is one of the crucial factors in GSNO decomposition. The correlation between the concentration of NO released and -SH level in blood plasma supports this conclusion. Complementary studies on gamma-glutamyltranspeptidase activity and ICP-MS multielement analysis of CVD patients' plasma samples in comparison to a healthy control group provide broader insights into the mechanism of cardiovascular risk development induced by air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Doença da Artéria Coronariana/sangue , Insuficiência Cardíaca/sangue , Metais/toxicidade , S-Nitrosoglutationa/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Íons , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue
12.
Curr Protein Pept Sci ; 22(9): 629-640, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34635039

RESUMO

For many years, natural products have played a crucial role in drug discovery and drug design as a source of active agents or as inspiration. Lactoferrin (Lf), a glycoprotein found in milk and mammalian secretions, has been extensively studied in recent years, and numerous antimicrobial, anti-inflammatory, and anticancer properties of Lf have been demonstrated in the literature. The use of lactoferrin as a co-agent or supplement to enhance the beneficial effect of drugs, or to reduce their side effects, arouses the interest of many researchers, especially since Lf is a well-studied, biocompatible, cheap, and easily accessible protein. In this mini-review, we focus on the elucidation of the role of Lf in antimicrobial or anticancer therapies, pointing to the possible mechanism underlying the determined synergism between Lf and commonly used drugs.


Assuntos
Lactoferrina
13.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34681238

RESUMO

Primary tumor targeting is the dominant approach in drug development, while metastasis is the leading cause of cancer death. Therefore, in addition to the cytotoxic activity of a series of Ru(II) polypyridyl complexes of the type [Ru(dip)2L]2+ (dip: 4,7-diphenyl-1,10-phenanthroline while L = dip; bpy: 2,2'-bipyridine; bpy-SC: bipyridine derivative bearing a semicarbazone 2-formylopyridine moiety; dpq, dpq(CH3)2, dpb: quinoxaline derivatives) their ability to inhibit cell detachment was investigated. In vitro studies performed on lung cancer A549 cells showed that they accumulate in cells very well and exhibit moderate cytotoxicity with IC50 ranging from 4 to 13 µM. Three of the studied compounds that have dip, bpy-SC, or dpb ligands after treatment of the cells with a non-toxic dose (<1/2IC50) enhanced their adhesion properties demonstrated by lower detachment in the trypsin resistance assay. The same complexes inhibited both MMP-2 and MMP-9 enzyme activities with IC50 ranging from 2 to 12 µM; however, the MMP-9 inhibition was stronger. More detailed studies for [Ru(dip)2(bpy-SC)]2+, which induced the greatest increase in cell adhesion, revealed that it is predominately accumulated in the cytoskeletal fraction of A549 cells. Moreover, cells treated with this compound showed the localization of MMP-9 to a greater extent also in the cytoskeleton. Taken together, our results indicate the possibility of a reduction of metastatic cells escaping from the primary lesion to the surrounding tissue by prevention of their detachment and by influencing the activity of MMP-2 and MMP-9.

14.
Dalton Trans ; 50(28): 9923-9933, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34223570

RESUMO

S-Nitrosothiols act as a comparatively long-lived reservoir of releasable nitric oxide (NO) present in vivo in a variety of body fluids. Soluble constituents of air-borne particulate matter (PM) can affect S-nitrosothiol stability and deregulate NO-based biological signaling. PM aqueous extracts of standard urban dust (SRM 1648a) were prepared, and their effect on human serum S-nitrosoalbumin (HSA-NO) stability was studied. The results indicated that PM extracts induced a release of NO from HSA-NO in a dose-dependent manner. To identify the inorganic components of urban PM responsible for HSA-NO decomposition, the effects of individual metal ions and metal ion mixtures, detected in the SRM 1648a aqueous extract, were examined. The dominant role of copper ions (specifically Cu+) was confirmed, but the results did not exclude the influence of other water-soluble PM components. Measurements with the application of several common metal ion chelators confirmed that Cu2+ may participate in NO release from HSA-NO and that reduction to monovalent Cu+ (responsible for S-NO bond breaking) may occur with the participation of S-nitrosoalbumin. The addition of ascorbic acid (AscA) significantly enhanced the effectiveness of NO release by PM extracts both kinetically and quantitatively, by inducing an increase in the reduction of Cu2+ to Cu+. These results indicate that AscA present in the respiratory tract lining fluids and plasma may amplify the activity of inorganic components of PM in S-nitrosothiol decomposition.

15.
Metallomics ; 12(5): 784-793, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32227043

RESUMO

The well-documented cytotoxic activity of coordinatively saturated and substitutionally inert polypyridyl Ru(ii) complexes substantiates their high potency as antiproliferative agents against primary tumors. However, the primary cause of cancer morbidity and mortality responsible for about 90% of cancer deaths is the occurrence of metastasis. Therefore, scientists have to concentrate their efforts on designing compounds affecting not only the primary tumor, but also efficiently inhibiting metastasis. Herein, we report two families of Ru(ii) polypyridyl complexes bearing 2,2'-bipyridine substituted by a semicarbazone 2-formylopyridine moiety as one of the ligands and 4,4'-di-tert-butyl-2,2'-dipyridyl or 4,7-diphenyl-1,10-phenanthroline as auxiliary ligands. These complexes strengthen cells' adherent properties and inhibit the activity of metalloproteinases (MMPs) in vitro, which is relevant in anti-metastatic treatment. The in vitro studies were performed on human lung adenocarcinoma (A549) and human pancreatic cancer (PANC-1) cells, which have a well-documented invasive potential. The induced alteration of the tumor cells' adhesion properties correlated with the high cytotoxic effect exerted by the complexes and their excellent cellular uptake. It was also proved that both complexes directly inhibit M-MP2 and M-MP9 enzyme activities, which are essential for the development of tumor metastasis. The results of this study indicate that the biological properties of polypyridyl Ru(ii) complexes extend beyond the standard cytotoxic activity and represent an important step towards designing new anti-metastatic agents.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Piridinas/química , Rutênio/química , Células A549 , Adenocarcinoma de Pulmão/secundário , Antineoplásicos/química , Apoptose , Adesão Celular , Complexos de Coordenação/química , Humanos , Neoplasias Pulmonares/patologia
16.
Front Chem ; 8: 581752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392147

RESUMO

Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.

17.
Curr Protein Pept Sci ; 20(11): 1046-1051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31092176

RESUMO

Lactoferrin was isolated and purified for the first time over 50-years ago. Since then, extensive studies on the structure and function of this protein have been performed and the research is still being continued. In this mini-review we focus on presenting recent scientific efforts towards the elucidation of the role and therapeutic potential of lactoferrin saturated with iron(III) or manganese(III) ions. The difference in biological activity of metal-saturated lactoferrin vs. the unmetalated one is emphasized. The strategies for oral delivery of lactoferrin, are also reviewed, with particular attention to the metalated protein.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lactoferrina/administração & dosagem , Lactoferrina/química , Metais/química , Administração Oral , Animais , Humanos , Ferro/química , Manganês/química
18.
Curr Protein Pept Sci ; 20(11): 1052-1059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31092177

RESUMO

Ruthenium(II) polypyridyl complexes have been extensively studied for the past few decades as promising anticancer agents. Despite the expected intravenous route of administration, the interaction between Ru(II) polypyridyl compounds and serum proteins is not well characterized and vast majority of the available literature data concerns determination of the binding constant. Ru-protein adducts can modify the biological effects of the Ru complexes influencing their cytotoxic and antimicrobial activity as well as introduce significant changes in their photophysical properties. More extensive research on the interaction between serum proteins and Ru(II) polypyridyl complexes is important for further development of Ru(II) polypyridyl compounds towards their application in anticancer therapy and diagnostics and can open new opportunities for already developed complexes.


Assuntos
Proteínas Sanguíneas/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Rutênio/química , Animais , Descoberta de Drogas , Humanos , Compostos Organometálicos/farmacologia
19.
J Pharm Sci ; 108(7): 2438-2446, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30851342

RESUMO

Some forms of bovine lactoferrin (bLf) are effective in delaying Clostridioides difficile growth and preventing toxin production. However, therapeutic use of bLf may be limited by protein stability issues. The objective of this study was to prepare and evaluate colon-targeted, pH-triggered alginate microparticles loaded with bioactive bLf and to evaluate their anti-C difficile defense properties in vitro. Different forms of metal-bound bLf were encapsulated in alginate microparticles using an emulsification or internal gelation method. The microparticles were coated with chitosan to control protein release. In vitro drug release studies were conducted in pH-simulated gastrointestinal conditions to investigate the release kinetics of encapsulated protein. No significant release of metal-bound bLf was observed at acidic pH; however, on reaching simulated colonic pH, most of the encapsulated lactoferrin was released. The application of bLf (5 mg/mL) delivered from alginate microparticles to human intestinal epithelial cells significantly reduced the cytotoxic effects of toxins A and B as well as bacterial supernatant on Caco-2 and Vero cells, respectively. These results are the first to suggest that alginate-bLf microparticles show protective effects against C difficile toxin-mediated epithelial damage and impairment of barrier function in human intestinal epithelial cells. The future potential of lactoferrin-loaded alginate microparticles against C difficile deserves further study.


Assuntos
Alginatos/química , Clostridioides difficile/enzimologia , Enterocolite Pseudomembranosa/tratamento farmacológico , Lactoferrina/química , Lactoferrina/farmacologia , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Quitosana/química , Chlorocebus aethiops , Colo/efeitos dos fármacos , Colo/microbiologia , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Células Vero
20.
ChemSusChem ; 12(3): 661-671, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427595

RESUMO

Exposure to airborne particulate matter (PM) is associated with hazardous effects on human health. Soluble constituents of PM may be released in biological fluids and disturb the precisely tuned nitric oxide signaling processes. The influence of aqueous extracts from two types of airborne urban PM (SRM 1648a, a commercially available sample, and KR PM2.5, a sample collected "in-house" in Krakow, Poland) on the stability of S-nitrosoglutathione (GSNO) was investigated. The particle interfaces had no direct effect on the studied reaction, but extracts obtained from both samples facilitated NO release from GSNO. The effectiveness of NO release was significantly affected by glutathione (GSH) and ascorbic acid (AscA). Examination of the combined influence of Cu2+ , Fe3+ , and reductants on GSNO stability revealed copper to be the main GSNO decomposing species. Computational models of nitrosothiols interacting with metal oxide substrates and solvated metal ions support these claims. The study stresses the importance of the interplay between metal ions and biological reductants in S-nitrosothiols decomposition.


Assuntos
Óxido Nítrico/química , Material Particulado/química , S-Nitrosoglutationa/química , Transdução de Sinais , Ácido Ascórbico/química , Cobre/química , Compostos Férricos/química , Glutationa/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...