Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0149624, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953635

RESUMO

Cryptococcus neoformans is an environmentally acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence.IMPORTANCECryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1, in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.

2.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293062

RESUMO

Cryptococcus neoformans is an environmentally-acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells. C. neoformans may be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found that sac1 mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence. IMPORTANCE: Cryptococcus neoformans is a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction between C. neoformans and host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene, SAC1 , in these processes. Overall, this study contributes to our understanding of how C. neoformans interacts with and protects itself from host cells.

3.
Vaccine ; 40(6): 854-861, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34991929

RESUMO

The COVID-19 pandemic dramatically demonstrated the need for improved vaccination strategies and therapeutic responses to combat infectious diseases. However, the efficacy of vaccines has not yet been demonstrated in combination with commonly used immunosuppressive drug regimens. We sought to determine how common pharmaceutical drugs used in autoimmune disorders can alter immune responses to the SARS-CoV-2 spike protein vaccination. We treated mice with five immunosuppressant drugs (cyclophosphamide, leflunomide, methotrexate, methylprednisolone, and mycophenolate mofetil), each with various mechanisms of action prior to and following immunization with SARS-CoV-2 spike protein. We assessed the functionality of antibody responses to spike protein and compared immune cell populations in mice that received no treatment with those that received continuous or temporarily suspended immune suppressive therapy. All tested immunosuppressants significantly reduced the antibody titers in serum and functional antibody response against SARS-CoV-2 spike protein in immunized mice. Temporarily halting selected immunosuppressants (methylprednisolone and methotrexate, but not cyclophosphamide) improved antibody responses significantly. Through proof-of-principle experiments utilizing a mouse model, we demonstrated that immune suppression in autoimmune disorders through pharmaceutical treatments may impair vaccine response to SARS-CoV-2, and temporary suspension of immunosuppressant treatment may be necessary to mount an effective antibody vaccine response. This work provides feasibility for future clinical assessment of the impact of immunosuppressants on vaccine efficacy in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunossupressores , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Eficácia de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...