Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 161: e183-e191, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093575

RESUMO

BACKGROUND: Spinal cord injury (SCI) triggers a signalling cascade that produces oxidative stress and damages the spinal cord. Voltammetry is a clinically accessible technique to detect, monitor, and guide correction of this potentially reversible secondary injury mechanism. Voltammetry is well suited for clinical translation because the method is inexpensive, simple, rapid, and portable. Voltammetry relies on the measurement of anodic current from a reagent-free, electrochemical reaction on the surface of a small electrode. METHODS: The present study tested the use of new disposable carbon nanotube based screen printed electrodes (CNT-SPE) for the voltammetric measurement of antioxidant current (AC). Spinal cord, cerebrospinal fluid, and plasma were obtained from Sprague-Dawley rats after SCI. Locomotor function after SCI was assessed by using the Basso, Beattie, Bresnahan (BBB) score. RESULTS: The more severe SCI caused a decline in spinal cord AC419 at 10 minutes (P < 0.05), 4 hours (P < 0.0001), and 1 day (P < 0.01) after injury compared with sham controls. It also caused a decline in plasma AC375 at 1 (P < 0.001) and 3 days (P < 0.05) after injury compared with their pre-injury baseline. Spinal cord AC419 correlated with plasma AC375 (r = 0.49, P < 0.01) and BBB score (r = 0.66, P < 0.0001) at 1 day after SCI. CONCLUSIONS: AC measured by CNT-SPE demonstrated a time- and severity-dependent decline after SCI. Plasma AC could serve as a surrogate marker for spinal cord AC.


Assuntos
Antioxidantes , Traumatismos da Medula Espinal , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Roedores
3.
Sports Med ; 47(8): 1589-1599, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28097488

RESUMO

BACKGROUND: Polyphenols exert physiological effects that may impact athletic performance. Polyphenols are antioxidants that have been noted to hinder training adaptations, yet conversely they stimulate stress-related cell signalling pathways that trigger mitochondrial biogenesis and influence vascular function. OBJECTIVE: To determine the overall effect of polyphenols on human athletic performance. METHODS: A search strategy was completed using MEDLINE, EMBASE, CINAHL, AMED and SPORTDiscus in April 2016. The studies were screened and independently reviewed by two researchers against predetermined criteria for eligibility. As a result of this screening, 14 studies were included for meta-analysis. Of these, the studied populations were predominately-trained males with an average intervention dose of 688 ± 478 mg·day-1. RESULTS: The pooled results demonstrate polyphenol supplementation for at least 7 days increases performance by 1.90% (95% CI 0.40-3.39). Sub-analysis of seven studies using quercetin identified a performance increase of 2.82% (95% CI 2.05-3.58). There were no adverse effects reported in the studies in relation to the intervention. CONCLUSION: Overall the pooled results show that polyphenols, and of note quercetin, are viable supplements to improve performance in healthy individuals.


Assuntos
Antioxidantes/administração & dosagem , Desempenho Atlético/fisiologia , Suplementos Nutricionais , Polifenóis/administração & dosagem , Quercetina/administração & dosagem , Humanos , Masculino , Estresse Oxidativo , Polifenóis/química
4.
BMC Med Imaging ; 15: 61, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714630

RESUMO

BACKGROUND: The term severe acute respiratory infection (SARI) encompasses a heterogeneous group of respiratory illnesses. Grading the severity of SARI is currently reliant on indirect disease severity measures such as respiratory and heart rate, and the need for oxygen or intensive care. With the lungs being the primary organ system involved in SARI, chest radiographs (CXRs) are potentially useful for describing disease severity. Our objective was to develop and validate a SARI CXR severity scoring system. METHODS: We completed validation within an active SARI surveillance project, with SARI defined using the World Health Organization case definition of an acute respiratory infection with a history of fever, or measured fever of ≥ 38 °C; and cough; and with onset within the last 10 days; and requiring hospital admission. We randomly selected 250 SARI cases. Admission CXR findings were categorized as: 1 = normal; 2 = patchy atelectasis and/or hyperinflation and/or bronchial wall thickening; 3 = focal consolidation; 4 = multifocal consolidation; and 5 = diffuse alveolar changes. Initially, four radiologists scored CXRs independently. Subsequently, a pediatrician, physician, two residents, two medical students, and a research nurse independently scored CXR reports. Inter-observer reliability was determined using a weighted Kappa (κ) for comparisons between radiologists; radiologists and clinicians; and clinicians. Agreement was defined as moderate (κ > 0.4-0.6), good (κ > 0.6-0.8) and very good (κ > 0.8-1.0). RESULTS: Agreement between the two pediatric radiologists was very good (κ = 0.83, 95% CI 0.65-1.00) and between the two adult radiologists was good (κ = 0.75, 95% CI 0.57-0. 93). Agreement of the clinicians with the radiologists was moderate-to-good (pediatrician:κ = 0.65; pediatric resident:κ = 0.69; physician:κ = 0.68; resident:κ = 0.67; research nurse:κ = 0.49, medical students: κ = 0.53 and κ = 0.56). Agreement between clinicians was good-to-very good (pediatrician vs. physician:κ = 0.85; vs. pediatric resident:κ = 0.81; vs. medicine resident:κ = 0.76; vs. research nurse:κ = 0.75; vs. medical students:κ = 0.63 and 0.66). Following review of discrepant CXR report scores by clinician pairs, κ values for radiologist-clinician agreement ranged from 0.59 to 0.70 and for clinician-clinician agreement from 0.97 to 0.99. CONCLUSIONS: This five-point CXR scoring tool, suitable for use in poorly- and well-resourced settings and by clinicians of varying experience levels, reliably describes SARI severity. The resulting numerical data enables epidemiological comparisons of SARI severity between different countries and settings.


Assuntos
Radiografia Torácica/normas , Infecções Respiratórias/diagnóstico por imagem , Doença Aguda , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...