Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 465, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172239

RESUMO

Attaining high crop yields and increasing carbon storage in agricultural soils, while avoiding negative environmental impacts on water quality, soil erosion, and biodiversity, requires accurate and precise management of crop inputs and management practices. The long-term analysis of spatial and temporal patterns of crop yields provides insights on how yields vary in a field, with parts of field constantly producing either high yields or low yields and other parts that fluctuate from one year to the next. The concept of yield stability has shown to be informative on how plants translate the effects of environmental conditions (e.g., soil, climate, topography) across the field and over the years in the final yield, and as a valuable layer in developing prescription maps of variable fertilizer rate inputs. Using known relationships between soil health and crop yields, we hypothesize that areas with measured constantly low yield will return low carbon to the soil affecting its heath. On this premises, yield stability zones (YSZ) provide an effective and practical integrative measure of the small-scale variability of soil health on a field relative basis. We tested this hypothesis by measuring various metrics of soil health from commercial farmers' fields in the north central Midwest of the USA in samples replicated across YSZ, using a soil test suite commonly used by producers and stakeholders active in agricultural carbon credits markets. We found that the use of YSZ allowed us to successfully partition field-relative soil organic carbon (SOC) and soil health metrics into statistically distinct regions. Low and stable (LS) yield zones were statistically lower in normalized SOC when compared to high and stable (HS) and unstable (US) yield zones. The drivers of the yield differences within a field are a series of factors ranging from climate, topography and soil. LS zones occur in areas of compacted soil layers or shallow soils (edge of the field) on steeper slopes. The US zones occurring with high water flow accumulation, were more dependent on topography and rainfall. The differences in the components of the overall soil health score (SHS) between these YSZ increased with sample depth suggesting a deeper topsoil in the US and HS zones, driven by the accumulation of water, nutrients, and carbon downslope. Comparison of the field management provided initial evidence that zero tillage reduces the magnitude of the variance in SOC and soil health metrics between the YSZ.

2.
Sci Rep ; 13(1): 2242, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755054

RESUMO

Agricultural soils can act as a sink for large quantities of soil organic carbon (SOC) but can also be sources of carbon to the atmosphere. The international standard for assessing SOC stock and measuring stock change stipulates fixed depth sampling to at least 30 cm. The tendency of bulk density (BD) to decrease with decreasing disturbance and increasing SOC concentration and the assumption of constant SOC and BD within this depth profile promotes error in the estimates of SOC stock. A hypothetical but realistic change in BD from 1.5 to 1.1 g cm-3 from successive fixed depth sampling to 30 cm underestimates SOC stock change by 17%. Significant effort has been made to evaluate and reduce this fixed depth error by using the equivalent soil mass (ESM) approach, but with limited adoption. We evaluate the error in SOC stock assessment and change generated from fixed depth measurements over time relative to the ESM approach and propose a correction that can be readily adopted under current sampling and analytical methods. Our approach provides a more accurate estimate of SOC stock accumulation or loss that will help incentivize management practice changes that reduce the environmental impacts of agriculture and further legitimize the accounting practices used by the emerging carbon market and organizations that have pledged to reduce their supply chain greenhouse gas (GHG) footprints.

3.
Bioresour Technol ; 101(14): 5658-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20202833

RESUMO

Biodynamic (BD) agriculture, a form of organic agriculture, includes the use of specially fermented preparations, but peer-reviewed studies on their efficacy are rare. Composting of a grape pomace and manure mixture was studied in two years (2002 and 2005) with and without the BD compost preparations. Water extracts of finished composts were then used to fertigate wheat seedlings, with and without added inorganic fertilizer. BD-treated mixtures had significantly greater dehydrogenase activity than did untreated (control) mixtures during composting, suggesting greater microbial activity in BD-treated compost. In both years there was a distinct compost effect on wheat shoot and root biomass irrespective of supplemental fertilizer. Shoot biomass was highest in all treatments receiving 1% compost extract. Wheat seedlings that received 1% compost extract in 2005 grew similar root and shoot biomass as fertilized seedlings, despite only containing 30% as much nitrogen as the fertilizer treatment. In both years seedlings that received fertilizer plus 1% compost extract produced 22-61% more shoot biomass and 40-66% more root biomass than seedlings that received fertilizer alone, even at higher rates. In 2002 a 1% extract of BD compost grew 7% taller wheat seedlings than did 1% extract of untreated compost. At 0.1% only BD extract grew taller plants than water, but in 2002 only. No effect on shoot or root biomass was seen at 0.1%. Our results support the use of compost extracts as fertilizer substitutes or supplements, testimonial reports on the growth promoting effects of compost extracts, and the occasional superiority of BD compost to untreated compost.


Assuntos
Plântula/crescimento & desenvolvimento , Solo , Triticum/genética , Bioensaio , Biomassa , Biotecnologia/métodos , Fertilização , Fertilizantes , Esterco , Nitrogênio/química , Oxigênio/química , Raízes de Plantas/metabolismo , Compostos de Amônio Quaternário/química , Fatores de Tempo , Vitis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...