Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37232899

RESUMO

Certain molecules act as biomarkers in exhaled breath or outgassing vapors of biological systems. Specifically, ammonia (NH3) can serve as a tracer for food spoilage as well as a breath marker for several diseases. H2 gas in the exhaled breath can be associated with gastric disorders. This initiates an increasing demand for small and reliable devices with high sensitivity capable of detecting such molecules. Metal-oxide gas sensors present an excellent tradeoff, e.g., compared to expensive and large gas chromatographs for this purpose. However, selective identification of NH3 at the parts-per-million (ppm) level as well as detection of multiple gases in gas mixtures with one sensor remain a challenge. In this work, a new two-in-one sensor for NH3 and H2 detection is presented, which provides stable, precise, and very selective properties for the tracking of these vapors at low concentrations. The fabricated 15 nm TiO2 gas sensors, which were annealed at 610 °C, formed two crystal phases, namely anatase and rutile, and afterwards were covered with a thin 25 nm PV4D4 polymer nanolayer via initiated chemical vapor deposition (iCVD) and showed precise NH3 response at room temperature and exclusive H2 detection at elevated operating temperatures. This enables new possibilities in application fields such as biomedical diagnosis, biosensors, and the development of non-invasive technology.


Assuntos
Amônia , Gases , Gases/química , Titânio/química
2.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771827

RESUMO

Metal oxide gas sensors are of great interest for applications ranging from lambda sensors to early hazard detection in explosive media and leakage detection due to their superior properties with regard to sensitivity and lifetime, as well as their low cost and portability. However, the influence of ambient gases on the gas response, energy consumption and selectivity still needs to be improved and they are thus the subject of intensive research. In this work, a simple approach is presented to modify and increase the selectivity of gas sensing structures with an ultrathin polymer thin film. The different gas sensing surfaces, CuO, Al2O3/CuO and TiO2 are coated with a conformal < 30 nm Poly(1,3,5,7-tetramethyl-tetravinyl cyclotetrasiloxane) (PV4D4) thin film via solvent-free initiated chemical vapor deposition (iCVD). The obtained structures demonstrate a change in selectivity from ethanol vapor to 2-propanol vapor and an increase in selectivity compared to other vapors of volatile organic compounds. In the case of TiO2 structures coated with a PV4D4 thin film, the increase in selectivity to 2-propanol vapors is observed even at relatively low operating temperatures, starting from >200 °C. The present study demonstrates possibilities for improving the properties of metal oxide gas sensors, which is very important in applications in fields such as medicine, security and food safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...