Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Plants ; 9(4): 535-543, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914897

RESUMO

DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant's life1-3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8-10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
2.
New Phytol ; 238(2): 654-672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683399

RESUMO

Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.


Assuntos
Proteínas de Arabidopsis , Bryopsida , Esporos , Traqueófitas , Diterpenos , Germinação , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Proteínas de Arabidopsis/metabolismo , Esporos/metabolismo , Traqueófitas/metabolismo , Bryopsida/metabolismo , Plantas/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia
3.
Semin Cell Dev Biol ; 109: 46-54, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414681

RESUMO

Gibberellins modulate multiple aspects of plant behavior. The molecular mechanism by which these hormones are perceived and how this information is translated into transcriptional changes has been elucidated in vascular plants: gibberellins are perceived by the nuclear receptor GID1, which then interacts with the DELLA nuclear proteins and promote their degradation, resulting in the modification of the activity of transcription factors with which DELLAs interact physically. However, several important questions are still pending: how does a single molecule perform such a vast array of functions along plant development? What property do gibberellins add to plant behavior? A closer look at gibberellin action from an evolutionary perspective can help answer these questions. DELLA proteins are conserved in all land plants, and predate the emergence of a full gibberellin metabolic pathway and the GID1 receptor in the ancestor of vascular plants. The origin of gibberellin signaling is linked to the exaptation by GID1 of the N-terminal domain in DELLA, which already acted as a transcriptional coactivator domain in the ancestral DELLA proteins. At least the ability to control plant growth seems to be encoded already in the ancestral DELLA protein too, suggesting that gibberellins' functional diversity is the direct consequence of DELLA protein activity. Finally, comparative network analysis suggests that gibberellin signaling increases the coordination of transcriptional responses, providing a theoretical framework for the role of gibberellins in plant adaptation at the evolutionary scale, which further needs experimental testing.


Assuntos
Giberelinas/metabolismo , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/fisiologia
4.
Mol Biol Evol ; 36(5): 908-918, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668817

RESUMO

DELLA proteins are plant-specific transcriptional regulators known to interact through their C-terminal GRAS domain with over 150 transcription factors in Arabidopsis thaliana. Besides, DELLAs from vascular plants can interact through the N-terminal domain with the gibberellin receptor encoded by GID1, through which gibberellins promote DELLA degradation. However, this regulation is absent in nonvascular land plants, which lack active gibberellins or a proper GID1 receptor. Current knowledge indicates that DELLAs are important pieces of the signaling machinery of vascular plants, especially angiosperms, but nothing is known about DELLA function during early land plant evolution or if they exist at all in charophytan algae. We have now elucidated the evolutionary origin of DELLA proteins, showing that algal GRAS proteins are monophyletic and evolved independently from those of land plants, which explains why there are no DELLAs outside land plants. DELLA genes have been maintained throughout land plant evolution with only two major duplication events kept among plants. Furthermore, we show that the features needed for DELLA interaction with the receptor were already present in the ancestor of all land plants and propose that these DELLA N-terminal motifs have been tightly conserved in nonvascular land plants for their function in transcriptional coactivation, which allowed subsequent exaptation for the interaction with the GID1 receptor when vascular plants developed gibberellin synthesis and the corresponding perception module.


Assuntos
Proteínas de Algas/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Plantas/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Ativação Transcricional
5.
Development ; 145(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29914969

RESUMO

Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Giberelinas/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/citologia , Óvulo Vegetal/citologia
6.
Front Plant Sci ; 8: 626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487716

RESUMO

DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs), whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins), Physcomitrella patens (with GA-independent DELLA proteins) and Chlamydomonas reinhardtii (a green alga without DELLA), and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory 'hubs' became further consolidated after their recruitment by GA signaling in higher plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...