Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982845

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients' survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Animais , Humanos , Glioblastoma/metabolismo , Desacetilase 6 de Histona , Peixe-Zebra , Sobrevivência Celular , Proteínas Hedgehog , Temozolomida/farmacologia , Lisossomos/metabolismo , Esfingolipídeos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
2.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683018

RESUMO

Prostate cancer (PC) is a male common neoplasm and is the second leading cause of cancer death in American men. PC is traditionally diagnosed by the evaluation of prostate secreted antigen (PSA) in the blood. Due to the high levels of false positives, digital rectal examination and transrectal ultrasound guided biopsy are necessary in uncertain cases with elevated PSA levels. Nevertheless, the high mortality rate suggests that new PC biomarkers are urgently needed to help clinical diagnosis. In a previous study, we have identified a network of genes, altered in high Gleason Score (GS) PC (GS ≥ 7), being regulated by miR-153. Until now, no publication has explained the mechanism of action of miR-153 in PC. By in vitro studies, we found that the overexpression of miR-153 in high GS cell lines is required to control cell proliferation, migration and invasion rates, targeting Kruppel-like factor 5 (KLF5). Moreover, miR-153 could be secreted by exosomes and microvesicles in the microenvironment and, once entered into the surrounding tissue, could influence cellular growth. Being upregulated in high GS human PC, miR-153 could be proposed as a circulating biomarker for PC diagnosis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Proliferação de Células/genética , Humanos , Masculino , MicroRNAs/genética , Gradação de Tumores , Antígeno Prostático Específico , Neoplasias da Próstata/metabolismo , Microambiente Tumoral
3.
Int J Biochem Cell Biol ; 145: 106184, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217188

RESUMO

Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3ß) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.


Assuntos
Lactosilceramidas , Leucodistrofia de Células Globoides , Proteínas Adaptadoras de Transdução de Sinal , Glicogênio Sintase Quinase 3 beta , Humanos , Lactosilceramidas/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Psicosina/metabolismo
4.
J Cell Physiol ; 234(5): 6067-6076, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246374

RESUMO

Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.


Assuntos
Histona Desacetilases/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Músculo Esquelético/citologia , Mioblastos/metabolismo , Peixe-Zebra
5.
Mol Biosyst ; 11(6): 1612-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797839

RESUMO

Glioblastoma multiforme is the most aggressive astrocytoma characterized by the development of resistant cells to various cytotoxic stimuli. Nitric oxide (NO) is able to overcome tumor resistance in PTEN mutated rat C6 glioma cells due to its ability to inhibit cell growth by influencing the intracellular distribution of ceramide. The aim of this study is to monitor the effects of NO donor PAPANONOate on ceramide trafficking in human glioma cell lines, CCF-STTG1 (PTEN-mutated, p53-wt) and T98G (PTEN-harboring, p53-mutated), together with the assessment of their differential molecular signature by 2D-DIGE and MALDI mass spectrometry. In the CCF-STTG1 cell line, the results indicate that treatment with PAPANONOate decreased cell proliferation (<50%) and intracellular trafficking of ceramide, assessed by BODIPY-C5Cer, while these events were not observed in the T98G cell line. Proteomic results suggest that CCF-STTG1 cells are characterized by an increased expression of proteins involved in NO-associated ER stress (i.e. protein disulfide-isomerase A3, calreticulin, 78 kDa glucose-regulated protein), which could compromise ceramide delivery from ER to Golgi, leading to ceramide accumulation in ER and partial growth arrest. Conversely, T98G cell lines, resistant to NO exposure, are characterized by increased levels of cytosolic antioxidant proteins (i.e. glutathione-S-transferase P, peroxiredoxin 1), which might buffer intracellular NO. By providing differential ceramide distribution after NO exposure and differential protein expression of two high grade glioma cell lines, this study highlights specific proteins as possible markers for tumor aggressiveness. This study demonstrates that, in two different high grade glioma cell lines, NO exposure results in a different ceramide distribution and protein expression. Furthermore, this study highlights specific proteins as possible markers for tumor aggressiveness.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Hidrazinas/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Proteoma/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Hidrazinas/farmacocinética , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacocinética , Doadores de Óxido Nítrico/farmacocinética , Proteoma/análise , Proteômica
6.
PLoS One ; 9(10): e110875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350564

RESUMO

Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to ß-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of ß-cells exposed to glucolipotoxicity.


Assuntos
Ceramidas/química , Retículo Endoplasmático/metabolismo , Glucose/química , Complexo de Golgi/metabolismo , Células Secretoras de Insulina/citologia , Animais , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Insulinoma/metabolismo , Ácido Palmítico/química , Fosforilação , Interferência de RNA , Ratos , Esfingomielinas/química , Esfingosina/química
7.
J Biol Chem ; 284(8): 5088-96, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19103588

RESUMO

Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER.


Assuntos
Apoptose , Ceramidas/biossíntese , Retículo Endoplasmático/enzimologia , Glioblastoma/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Complexo de Golgi/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos , Vesículas Transportadoras/enzimologia
8.
Biochim Biophys Acta ; 1781(1-2): 40-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18068681

RESUMO

Intracellular movements of ceramide are strongly limited by its hydrophobic nature, and the mechanisms involved in ceramide transport can represent a crucial aspect of sphingolipid metabolism and signaling. The recent identification of the ceramide specific carrier protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin biosynthesis. In this study we investigated the metabolic and functional role of CERT in C6 glioma cells. These cells were found to constitutively express CERT, the protein being mainly associated with the cytosolic fraction. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids demonstrated that the down regulation of CERT by RNAi technology resulted in a significant but not complete reduction of ceramide metabolism to sphingomyelin, without affecting its utilization for glycosphingolipid biosynthesis. Since nitric oxide is an inhibitor of ceramide ER-to-Golgi traffic and metabolism in C6 glioma cells, we evaluated the possibility that the CERT-mediated transport of ceramide might represent a target for nitric oxide. The data obtained demonstrate that CERT down regulation does not affect the inhibitory activity of nitric oxide on Cer metabolism, and the effects of nitric oxide and CERT silencing on ceramide utilization were additive. These results strongly suggest that a CERT-mediated and a CERT-independent, nitric oxide-sensitive Cer transport coexist in C6 glioma cells and can separately contribute to the control of sphingolipid metabolism and Cer levels in these cells.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Glioma/metabolismo , Complexo de Golgi/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Astrócitos/enzimologia , Transporte Biológico , Linhagem Celular Tumoral , Regulação para Baixo , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Camundongos , Óxido Nítrico/farmacologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Esfingomielinas/biossíntese
9.
J Biol Chem ; 278(11): 9592-601, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12515829

RESUMO

The treatment of C6 glioma cells with the nitric oxide donor, PAPANONOate ((Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate), resulted in a dose-dependent inhibition of cell proliferation. This was associated to a rapid and significant increase of ceramide levels and was mimicked by treatments that augment cellular ceramide. Metabolic experiments with radioactive sphingosine, serine, and choline showed that nitric oxide strongly reduced the utilization of ceramide for the biosynthesis of both sphingomyelin and glucosylceramide. Nevertheless, nitric oxide did not modify the activity of different enzymes of ceramide metabolism. The possibility that nitric oxide impairs the availability of ceramide for sphingolipid biosynthesis was then investigated. The metabolism of N-hexanoyl-[(3)H]sphingosine demonstrated that nitric oxide did not affect the biosynthesis of N-hexanoyl-[(3)H]sphingolipids but inhibited the metabolic utilization of long chain [(3)H]ceramide, synthesized in the endoplasmic reticulum (ER) from the recycled [(3)H]sphingosine. Moreover, results obtained with fluorescent ceramides, brefeldin A, ATP depletion, as well as in a ceramide transport assay indicate that nitric oxide impairs the traffic of ceramide from ER to Golgi apparatus. All this supports that, in glioma cells, the modulation of ceramide traffic can contribute to the regulation of its intracellular levels and participate in the nitric oxide-activated signaling pathway involved in the control of cell proliferation.


Assuntos
Ceramidas/metabolismo , Glioma/enzimologia , Óxido Nítrico/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Brefeldina A/farmacologia , Divisão Celular , Linhagem Celular , Ceramidas/química , Ceramidas/farmacologia , Colina/química , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Insetos , Microscopia de Fluorescência , Ratos , Serina/química , Transdução de Sinais , Esfingomielinas/química , Esfingosina/química , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...