Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 12(9): 2756-66, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11553714

RESUMO

Dnm1p belongs to a family of dynamin-related GTPases required to remodel different cellular membranes. In budding yeast, Dnm1p-containing complexes assemble on the cytoplasmic surface of the outer mitochondrial membrane at sites where mitochondrial tubules divide. Our previous genetic studies suggested that Dnm1p's GTPase activity was required for mitochondrial fission and that Dnm1p interacted with itself. In this study, we show that bacterially expressed Dnm1p can bind and hydrolyze GTP in vitro. Coimmunoprecipitation studies and yeast two-hybrid analysis suggest that Dnm1p oligomerizes in vivo. With the use of the yeast two-hybrid system, we show that this Dnm1p oligomerization is mediated, in part, by a C-terminal sequence related to the GTPase effector domain (GED) in dynamin. The Dnm1p interactions characterized here are similar to those reported for dynamin and dynamin-related proteins that form higher order structures in vivo, suggesting that Dnm1p assembles to form rings or collars that surround mitochondrial tubules. Based on previous findings, a K705A mutation in the Dnm1p GED is predicted to interfere with GTP hydrolysis, stabilize active Dnm1p-GTP, and stimulate a rate-limiting step in fission. Here we show that expression of the Dnm1 K705A protein in yeast enhances mitochondrial fission. Our results provide evidence that the GED region of a dynamin-related protein modulates a rate-limiting step in membrane fission.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Dinamina I , Dinaminas , Escherichia coli , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/metabolismo , Hidrólise , Membranas Intracelulares/metabolismo , Cinética , Fusão de Membrana , Proteínas Mitocondriais , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
J Cell Biol ; 143(2): 333-49, 1998 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-9786946

RESUMO

The Saccharomyces cerevisiae Dnm1 protein is structurally related to dynamin, a GTPase required for membrane scission during endocytosis. Here we show that Dnm1p is essential for the maintenance of mitochondrial morphology. Disruption of the DNM1 gene causes the wild-type network of tubular mitochondrial membranes to collapse to one side of the cell but does not affect the morphology or distribution of other cytoplasmic organelles. Dnm1 proteins containing point mutations in the predicted GTP-binding domain or completely lacking the GTP-binding domain fail to rescue mitochondrial morphology defects in a dnm1 mutant and induce dominant mitochondrial morphology defects in wild-type cells. Indirect immunofluorescence reveals that Dnm1p is distributed in punctate structures at the cell cortex that colocalize with the mitochondrial compartment. These Dnm1p-containing structures remain associated with the spherical mitochondria found in an mdm10 mutant strain. In addition, a portion of Dnm1p cofractionates with mitochondrial membranes during differential sedimentation and sucrose gradient fractionation of wild-type cells. Our results demonstrate that Dnm1p is required for the cortical distribution of the mitochondrial network in yeast, a novel function for a dynamin-related protein.


Assuntos
Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Actinas/análise , Mapeamento Cromossômico , DNA Mitocondrial/análise , Dinamina I , Dinaminas , Endocitose/fisiologia , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Cinética , Microscopia Eletrônica , Microtúbulos/química , Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais , Mutagênese Sítio-Dirigida/fisiologia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Frações Subcelulares/química , Frações Subcelulares/enzimologia , Tubulina (Proteína)/análise , Vacúolos/ultraestrutura
3.
J Cell Sci ; 109 ( Pt 12): 2885-93, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9013336

RESUMO

The most abundant microtubule-associated protein in sea urchin eggs and embryos is the 77 kDa echinoderm microtubule-associated protein (EMAP). EMAP localizes to the mitotic spindle as well as the interphase microtubule array and is a likely target for a cell cycle-activated kinase. To determine if EMAP is phosphorylated in vivo, sea urchin eggs and embryos were metabolically labeled with 32PO4 and a monospecific antiserum was used to immunoprecipitate EMAP from 32P-labeled eggs and embryos. In this study, we demonstrate that the 77 kDa EMAP is phosphorylated in vivo by two distinct mechanisms. In the unfertilized egg, EMAP is constitutively phosphorylated on at least five serine residues. During the first cleavage division following fertilization, EMAP is phosphorylated with a cell cycle-dependent time course. As the embryo enters mitosis, EMAP phosphorylation increases, and as the embryo exits mitosis, phosphorylation decreases. During mitosis, EMAP is phosphorylated on 10 serine residues and two-dimensional phosphopeptide mapping reveals a mitosis-specific site of phosphorylation. At all stages of the cell cycle, a 33 kDa polypeptide copurifies with the 77 kDa EMAP, regardless of phosphorylation state. Antibodies against the cdc2 kinase were used to demonstrate that the 33 kDa polypeptide is the p34cdc2 kinase. The p34cdc2 kinase copurifies with the mitotic apparatus and immunostaining indicates that the p34cdc2 kinase is concentrated at the spindle poles. Models for the interaction of the p34cdc2 kinase and the 77 kDa EMAP are presented.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Ciclo Celular , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Fosforilação , Ouriços-do-Mar , Serina/metabolismo
4.
J Biol Chem ; 270(34): 19791-9, 1995 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-7649988

RESUMO

Evidence is presented for the differential effects of two isoforms of apolipoprotein (apo) E, apoE3 and apoE4, on neurite outgrowth and on the cytoskeleton of neuronal cells (Neuro-2a) in culture. In the presence of a lipid source, apoE3 enhances and apoE4 inhibits neurite outgrowth. Immunocytochemical studies demonstrate that there is a higher concentration of apoE3 than apoE4 in both the cell bodies and neurites. Cells treated with apoE4 showed fewer microtubules and a greatly reduced ratio of polymerized to monomeric tubulin than did cells treated with apoE3. The effect of apoE4 on depolymerization of microtubules was shown by biochemical, immunocytochemical, and ultrastructural studies. The depolymerization of microtubules and the inhibition of neurite outgrowth associated with apoE4 suggest a mechanism whereby apoE4, which has been linked to the pathogenesis of Alzheimer's disease, may prevent normal neuronal remodeling from occurring later in life, when this neurodegenerative disorder develops.


Assuntos
Apolipoproteínas E/farmacologia , Microtúbulos/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Actinas/metabolismo , Doença de Alzheimer/etiologia , Animais , Apolipoproteína E3 , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Linhagem Celular , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neuritos/metabolismo , Neuritos/ultraestrutura , Polímeros/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA