Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10959, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040081

RESUMO

Recoil pressure is a critical factor affecting the melt pool dynamics during Laser Powder Bed Fusion (LPBF) processes. Recoil pressure depresses the melt pool. When the recoil pressure is low, thermal conduction and capillary forces may be inadequate to provide proper fusion between layers. However, excessive recoil pressure can produce a keyhole inside the melt pool, which is associated with gas porosity. Direct recoil pressure measurements are challenging because it is localized over an area proportionate to the laser spot size producing a force in the mN range. This paper reports a vibration-based approach to quantify the recoil force exerted on a part in a commercial LPBF machine. The measured recoil force is consistent with estimates from high speed synchrotron imaging of entrained particles, and the results show that the recoil force scales with applied laser power and is inversely related to the laser scan speed. These results facilitate further studies of melt pool dynamics and have the potential to aid process development for new materials.

2.
Rev Sci Instrum ; 85(4): 043703, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784614

RESUMO

This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

3.
Rev Sci Instrum ; 82(10): 103704, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047300

RESUMO

This article presents a novel method to improve the measurement sensitivity and reduce impact forces in tapping-mode atomic force microscopy by reshaping the tip trajectory. A tapping drive signal composed of two harmonics is used to generate an oscillating trajectory with a broader valley compared to the typical sinusoidal trajectory. The wide broad valley reduces the velocity of the tip in the vicinity of the sample and allots a greater portion of each period in the vicinity of the sample. Numerical simulations show that this results in decreased impact force and increased sensitivity of the cantilever oscillation to changes in tip-sample offset. Experimental results demonstrate an increase in image sharpness and decrease in tip wear using the bi-harmonic driving signal.

4.
Rev Sci Instrum ; 79(10): 103704, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044716

RESUMO

This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...