Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106049

RESUMO

Clonal lineage inference ("tumor phylogenetics") has become a crucial tool for making sense of somatic evolution processes that underlie cancer development and are increasingly recognized as part of normal tissue growth and aging. The inference of clonal lineage trees from single cell sequence data offers particular promise for revealing processes of somatic evolution in unprecedented detail. However, most such tools are based on fairly restrictive models of the types of mutation events observed in somatic evolution and of the processes by which they develop. The present work seeks to enhance the power and versatility of tools for single-cell lineage reconstruction by making more comprehensive use of the range of molecular variant types by which tumors evolve. We introduce Sc-TUSV-ext, an integer linear programming (ILP) based tumor phylogeny reconstruction method that, for the first time, integrates single nucleotide variants (SNV), copy number alterations (CNA) and structural variations (SV) into clonal lineage reconstruction from single-cell DNA sequencing data. We show on synthetic data that accounting for these variant types collectively leads to improved accuracy in clonal lineage reconstruction relative to prior methods that consider only subsets of the variant types. We further demonstrate the effectiveness on real data in resolving clonal evolution in the presence of multiple variant types, providing a path towards more comprehensive insight into how various forms of somatic mutability collectively shape tissue development.

2.
Bioinform Adv ; 2(1): vbac055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992043

RESUMO

While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes-Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementation: Our software is available open source at https://github.com/nishatbristy007/NSB. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
PLoS One ; 14(9): e0221270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557185

RESUMO

Understanding cell differentiation-the process of generation of distinct cell-types-plays a pivotal role in developmental and evolutionary biology. Transcriptomic information and epigenetic marks are useful to elucidate hierarchical developmental relationships among cell-types. Standard phylogenetic approaches such as maximum parsimony, maximum likelihood and neighbor joining have previously been applied to ChIP-Seq histone modification data to infer cell-type trees, showing how diverse types of cells are related. In this study, we demonstrate the applicability and suitability of quartet-based phylogenetic tree estimation techniques for constructing cell-type trees. We propose two quartet-based pipelines for constructing cell phylogeny. Our methods were assessed for their validity in inferring hierarchical differentiation processes of various cell-types in H3K4me3, H3K27me3, H3K36me3, and H3K27ac histone mark data. We also propose a robust metric for evaluating cell-type trees.


Assuntos
Diferenciação Celular/genética , Código das Histonas/genética , Evolução Biológica , Linhagem Celular , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Funções Verossimilhança , Modelos Genéticos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...