Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0269223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38226819

RESUMO

A recent study published in mBio by Nemet et al. revealed the critical role played by two gut microbiota members in producing the metabolites indoxyl sulfate (IS) and p-cresol sulfate (pCS) (I. Nemet, M. Funabashi,X. S. Li, M. Dwidar, et al., 2023, mBio 14:e01331-23, https://doi.org/10.1128/mbio.01331-23). Understanding microbial pathways leading to IS and pCS production is crucial because they are connected to a pre-thrombotic profile, and having high levels of these metabolites increases the risk of cardiovascular diseases (CVD). Hence, this study can offer vital insights into assessing the risk for CVD and identifying potential treatment targets for this disease.


Assuntos
Doenças Cardiovasculares , Cresóis , Microbiota , Ésteres do Ácido Sulfúrico , Trombose , Humanos , Indicã
2.
Front Immunol ; 14: 1116811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261352

RESUMO

Despite the importance of the respiratory route for Brucella transmission, the lung immune response to this pathogen is scarcely characterized. We investigated the role of the cGAS/STING pathway of microbial DNA recognition in the control of respiratory Brucella infection. After in vitro B. abortus infection, CFU numbers were significantly higher in alveolar macrophages (AM) and lung explants from STING KO mice than in samples from wild type (WT) mice, but no difference was observed for cGAS KO samples. CFU were also increased in WT AM and lung epithelial cells preincubated with the STING inhibitor H151. Several proinflammatory cytokines (TNF-α, IL-1ß, IL-6, IP-10/CXCL10) were diminished in Brucella-infected lung explants and/or AM from STING KO mice and cGAS KO mice. These cytokines were also reduced in infected AM and lung epithelial cells pretreated with H151. After intratracheal infection with B. abortus, STING KO mice exhibited increased CFU in lungs, spleen and liver, a reduced expression of IFN-ß mRNA in lungs and spleen, and reduced levels of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF) and lung homogenates. Increased lung CFU and reduced BALF cytokines were also observed in cGAS KO mice. In summary, the cGAS/STING pathway induces the production of proinflammatory cytokines after respiratory Brucella infection, which may contribute to the STING-dependent control of airborne brucellosis.


Assuntos
Brucelose Bovina , Brucelose , Animais , Camundongos , Bovinos , Brucella abortus , Citocinas/metabolismo , Nucleotidiltransferases/genética
3.
Life Sci ; 324: 121750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142087

RESUMO

AIMS: Millions of people died during the COVID-19 pandemic, but the vast majority of infected individuals survived. Now, some consequences of the disease, known as long COVID, are been revealed. Although the respiratory system is the target of Sars-CoV-2, COVID-19 can influence other parts of the body, including bone. The aim of this work was to investigate the impact of acute coronavirus infection in bone metabolism. MAIN METHODS: We evaluated RANKL/OPG levels in serum samples of patients with and without acute COVID-19. In vitro, the effects of coronavirus in osteoclasts and osteoblasts were investigated. In vivo, we evaluated the bone phenotype in a BSL2 mouse model of SARS-like disease induced by murine coronavirus (MHV-3). KEY FINDINGS: Patients with acute COVID-19 presented decreased OPG and increased RANKL/OPG ratio in the serum versus healthy individuals. In vitro, MHV-3 infected macrophages and osteoclasts, increasing their differentiation and TNF release. Oppositely, osteoblasts were not infected. In vivo, MHV-3 lung infection triggered bone resorption in the femur of mice, increasing the number of osteoclasts at 3dpi and decreasing at 5dpi. Indeed, apoptotic-caspase-3+ cells have been detected in the femur after infection as well as viral RNA. RANKL/OPG ratio and TNF levels also increased in the femur after infection. Accordingly, the bone phenotype of TNFRp55-/- mice infected with MHV-3 showed no signs of bone resorption or increase in the number of osteoclasts. SIGNIFICANCE: Coronavirus induces an osteoporotic phenotype in mice dependent on TNF and on macrophage/osteoclast infection.


Assuntos
Reabsorção Óssea , COVID-19 , Animais , Humanos , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , COVID-19/metabolismo , Osteoblastos , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Pandemias , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Ligante RANK/metabolismo , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo
4.
Front Cell Infect Microbiol ; 12: 811474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548467

RESUMO

Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1ß, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.


Assuntos
Coinfecção , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Infecções por Pseudomonas , Animais , Criptococose/microbiologia , Camundongos , Fagocitose
5.
Immunology ; 165(3): 355-368, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964126

RESUMO

Mucositis is a major clinical complication associated with cancer treatment and may limit the benefit of chemotherapy. Leukocytes and inflammatory mediators have been extensively associated with mucositis severity. However, the role of eosinophils in the pathophysiology of chemotherapy-induced mucositis remains to be elucidated. Here, using GATA-1-deficient mice, we investigated the role of eosinophils in intestinal mucositis. There was marked accumulation of eosinophils in mice given irinotecan and eosinophil ablation inhibited intestinal mucositis. Treatment with Evasin-4, a chemokine receptor antagonist, reduced the recruitment of eosinophils and decreased irinotecan-induced mucositis. Importantly, Evasin-4 did not interfere negatively with the antitumour effects of irinotecan. Evasin-4 was of benefit for mice given high doses of irinotecan once Evasin-4-treated mice presented delayed mortality. Altogether, our findings suggest that Evasin-4 may have significant mucosal-protective effects in the context of antineoplastic chemotherapy and may, therefore, be useful in combination with anticancer treatment in cancer patients.


Assuntos
Antineoplásicos , Mucosite , Animais , Antineoplásicos/uso terapêutico , Camptotecina/efeitos adversos , Eosinófilos/patologia , Humanos , Mucosa Intestinal/patologia , Irinotecano/efeitos adversos , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia
6.
J Leukoc Biol ; 106(3): 619-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392775

RESUMO

This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1ß production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.


Assuntos
Artrite Gotosa/enzimologia , Artrite Gotosa/imunologia , Caspase 1/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Infiltração de Neutrófilos , Doença Aguda , Animais , Adesão Celular , Movimento Celular , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Citoplasma/metabolismo , Ativação Enzimática , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Articulações/patologia , Leucotrieno B4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neutrófilos/metabolismo , Nociceptividade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/irrigação sanguínea , Ácido Úrico
7.
J Immunol ; 198(10): 4096-4106, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424241

RESUMO

The indigenous intestinal microbiota is frequently considered an additional major organ of the human body and exerts profound immunomodulating activities. Germ-free (GF) mice display a significantly different inflammatory responsiveness pattern compared with conventional (CV) mice, and this was dubbed a "hyporesponsive phenotype." Taking into account that the deposition of immune complexes is a major event in acute inflammation and that GF mice have a distinct Ig repertoire and B cell activity, we aimed to evaluate whether this altered Ig repertoire interferes with the inflammatory responsiveness of GF mice. We found that serum transfer from CV naive mice was capable of reversing the inflammatory hyporesponsiveness of GF mice in sterile inflammatory injury induced by intestinal ischemia and reperfusion, as well as in a model of lung infection by Klebsiella pneumoniae Transferring serum from Ig-deficient mice to GF animals did not alter their response to inflammatory insult; however, injecting purified Abs from CV animals restored inflammatory responsiveness in GF mice, suggesting that natural Abs present in serum were responsible for altering GF responsiveness. Mechanistically, injection of serum and Ig from CV mice into GF animals restored IgG deposition, leukocyte influx, NF-κB activation, and proinflammatory gene expression in inflamed tissues and concomitantly downregulated annexin-1 and IL-10 production. Thus, our data show that microbiota-induced natural Abs are pivotal for host inflammatory responsiveness to sterile and infectious insults.


Assuntos
Anticorpos/imunologia , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Inflamação/imunologia , Intestinos/imunologia , Animais , Anexinas/imunologia , Anticorpos/administração & dosagem , Linfócitos B/imunologia , Regulação da Expressão Gênica , Humanos , Interleucina-10/imunologia , Intestinos/microbiologia , Intestinos/patologia , Isquemia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , NF-kappa B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...