Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918467

RESUMO

The exchange of mobile genetic elements (MGEs) facilitates the spread of functional traits including antimicrobial resistance within bacterial communities. Tools to spatially map MGEs and identify their bacterial hosts in complex microbial communities are currently lacking, limiting our understanding of this process. Here we combined single-molecule DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal RNA-FISH to enable simultaneous visualization of both MGEs and bacterial taxa. We spatially mapped bacteriophage and antimicrobial resistance (AMR) plasmids and identified their host taxa in human oral biofilms. This revealed distinct clusters of AMR plasmids and prophage, coinciding with densely packed regions of host bacteria. Our data suggest spatial heterogeneity in bacterial taxa results in heterogeneous MGE distribution within the community, with MGE clusters resulting from horizontal gene transfer hotspots or expansion of MGE-carrying strains. Our approach can help advance the study of AMR and phage ecology in biofilms.

2.
Cell Chem Biol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889717

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

3.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826307

RESUMO

Segatella copri is a dominant member of individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on the genetic diversity of S. copri, the lack of available isolates from this clade has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of S. copri. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to S. copri lineages either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related S. copri isolates, extending this to host-microbe interactions.

4.
bioRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38798469

RESUMO

Biologically produced materials are an attractive alternative to traditional materials such as metals and plastics and offer improved functionalities such as better biodegradability and biocompatibility. Polysaccharides are an example of a biologically produced materials that can have a range of chemical and physical properties including high stiffness to weight ratios and thermal stability. Biomanufactured bacterial polysaccharides can come with many advantages such as being non-toxic and are mechanically robust relative to proteins and lipids, which are also secreted by bacteria to generate a biofilm. One major goal in biomanufacturing is to produce quality material quickly and cost-effectively. Biomanufacturing offers additional benefits compared to traditional manufacturing including low resource investment and equipment requirements, providing an alternative to sourcing fossil fuel byproducts, and relatively low temperatures needed for production. However, many biologically produced materials require complex and lengthy purification processes before use. This paper 1) identifies the material properties of a novel polysaccharide, dubbed promonan, isolated from the extracellular polymeric substances of Sphingomonas sp. LM7; 2) demonstrates that these properties can be manipulated to suit specific applications; and 3) presents two alternative methods of processing to shorten purification time by more than 50% while maintaining comparable material.

5.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617281

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

6.
Int J Biol Macromol ; 267(Pt 2): 131434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614182

RESUMO

The gastrointestinal (GI) tract's mucus layer serves as a critical barrier and a mediator in drug nanoparticle delivery. The mucus layer's diverse molecular structures and spatial complexity complicates the mechanistic study of the diffusion dynamics of particulate materials. In response, we developed a bi-component coarse-grained mucus model, specifically tailored for the colorectal cancer environment, that contained the two most abundant glycoproteins in GI mucus: Muc2 and Muc5AC. This model demonstrated the effects of molecular composition and concentration on mucus pore size, a key determinant in the permeability of nanoparticles. Using this computational model, we investigated the diffusion rate of polyethylene glycol (PEG) coated nanoparticles, a widely used muco-penetrating nanoparticle. We validated our model with experimentally characterized mucus pore sizes and the diffusional coefficients of PEG-coated nanoparticles in the mucus collected from cultured human colorectal goblet cells. Machine learning fingerprints were then employed to provide a mechanistic understanding of nanoparticle diffusional behavior. We found that larger nanoparticles tended to be trapped in mucus over longer durations but exhibited more ballistic diffusion over shorter time spans. Through these discoveries, our model provides a promising platform to study pharmacokinetics in the GI mucus layer.


Assuntos
Muco , Nanopartículas , Polietilenoglicóis , Humanos , Nanopartículas/química , Difusão , Polietilenoglicóis/química , Muco/metabolismo , Muco/química , Mucina-2/metabolismo , Mucina-2/química , Mucina-5AC/metabolismo , Mucina-5AC/química , Mucosa Intestinal/metabolismo , Trato Gastrointestinal/metabolismo , Células Caliciformes/metabolismo , Modelos Biológicos
7.
PLoS One ; 19(2): e0297897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363784

RESUMO

Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.


Assuntos
Infecções Bacterianas , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neoplasias Colorretais/patologia , Fusobacterium nucleatum , Carcinogênese , Bacteroides fragilis
8.
Gut Microbes ; 16(1): 2315632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375831

RESUMO

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Assuntos
Microbioma Gastrointestinal , Amido Resistente , Camundongos , Masculino , Feminino , Animais , Microbioma Gastrointestinal/fisiologia , Ácidos e Sais Biliares , Suplementos Nutricionais , Bactérias/genética , Ácido Desoxicólico
9.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352480

RESUMO

Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.

10.
Nat Microbiol ; 9(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172625

RESUMO

Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.


Assuntos
Escherichia coli , RNA Guia de Sistemas CRISPR-Cas , Humanos , Escherichia coli/genética , RNA Polimerases Dirigidas por DNA/genética , RNA/genética , Perfilação da Expressão Gênica
11.
Cell ; 187(1): 17-43, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181740

RESUMO

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Assuntos
Microbiota , Fatores Sociais , Simbiose , Animais , Humanos , Doenças não Transmissíveis , Virulência
12.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260245

RESUMO

Background: Recent reassessment of the safety of aspartame has prompted increased evaluation of its effect on the health of a range of tissues. The gut microbiome is altered by oral aspartame. One prior study suggested that changes in the microbiome caused by aspartame could influence the strength of bone in young skeletally developing mice. Here we ask how aspartame influences bone in mice of different age and sex. Objective: The objective of this study was to determine the effect of aspartame on the bone strength and gut microbiota of young and aged mice. Methods: Male and female C57Bl/6J mice were untreated or treated with a high dose of aspartame in their drinking water from 1 month of age until 4 (young cohort; n = 80) or 22 months (aged cohort; n = 52). Results: In aged males, mice treated with aspartame had greater body mass, whole bone strength, and femoral geometry relative to untreated. Specifically, in aged males, aspartame led to 9% increase in body mass (p < 0.001), 22% increase in whole bone strength (p = 0.006), and 17% increase in section modulus (p < 0.001) relative to untreated mice. Aged males and females receiving aspartame had a different microbiota than untreated mice and a decreased abundance of Odoribacter. No differences in body mass, whole bone strength, or femoral geometry were associated with aspartame dosing in young males or young or aged females. Conclusions: Aspartame treated aged males had greater whole bone strength and the effect appeared to be explained by greater body mass. Aspartame treatment did not alter whole bone strength in young males or young or aged females despite the aspartame having a similar effect on the microbiota of both aged males and females.

13.
mBio ; 15(2): e0240923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236049

RESUMO

Sphingolipids serve as vital structural and signaling components of the cell membranes in both eukaryotes and prokaryotes. Within the gut microbiome, Bacteroides species have been identified as major producers of sphingolipids, and Bacteroides-produced sphingolipids have been shown to be modulators of host immune and metabolic functions. While Bacteroides species are a prominent feature of the gut microbiomes of populations living in industrialized countries, Prevotella copri, a member of the same phyla, albeit a different family, is the dominant feature across the remainder of the global population, although their sphingolipid-producing capabilities have not been as thoroughly investigated. To fill this gap, we examined the genomes of over 60 diverse isolates of P. copri and identified several key enzymes involved in sphingolipid synthesis in P. copri. Combining bioorthogonal labeling and liquid chromatography-mass spectrometry (LC-MS) based lipidomics, we functionally characterized the first step in P. copri de novo sphingolipid synthesis in addition to profiling the sphingolipidomes of P. copri strains, identifying key enzymes that may play roles in producing a diverse set of P. copri sphingolipids. Given the limited genetic engineering tools amenable for use in P. copri, our approach takes advantage of comparative genomics and phenotypic profiling to explore sphingolipid production in these understudied, yet highly prevalent, organisms.IMPORTANCESphingolipids are important signaling molecules for maintaining metabolic and immune homeostasis in the host. These lipids are also produced by gut commensals, most notably by Bacteroides species. Despite the global prevalence of Prevotella copri in gut microbiomes of individuals, little is known about the types of sphingolipids they produce and whether they are similar in composition and structure to those produced by Bacteroides. Given the varied associations of P. copri with diverse sphingolipid-related health outcomes, such as rheumatoid arthritis and glucose intolerance, it is important to first characterize the specific sphingolipids produced by individual strains of P. copri and to identify the genes involved in their pathways of production. This characterization of P. copri-derived sphingolipids provides further insight into how bacterial sphingolipid production can serve as a mechanism for microbial modulation of host phenotypes.


Assuntos
Microbioma Gastrointestinal , Esfingolipídeos , Humanos , Prevotella/genética , Eucariotos/metabolismo , Microbioma Gastrointestinal/genética , Bacteroides/genética , Bacteroides/metabolismo
14.
Trends Microbiol ; 32(4): 325-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37805334

RESUMO

The human gut microbiome is associated with a wide range of diseases; yet, the mechanisms these microbes use to influence human health are not fully understood. Protein-protein interactions (PPIs) are increasingly identified as a potential mechanism by which gut microbiota influence their human hosts. Similar to some PPIs observed in pathogens, many disease-relevant human-gut bacterial PPIs function by interacting with components of the immune system or the gut barrier. Here, we highlight recent advances in these two areas. It is our opinion that there is a vastly unexplored network of human-gut bacterial PPIs that contribute to the prevention or pathogenesis of various diseases and that future research is warranted to expand PPI discovery.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Proteínas de Bactérias , Bactérias
15.
Nat Commun ; 14(1): 7366, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963868

RESUMO

The acquisition of antimicrobial resistance (AR) genes has rendered important pathogens nearly or fully unresponsive to antibiotics. It has been suggested that pathogens acquire AR traits from the gut microbiota, which collectively serve as a global reservoir for AR genes conferring resistance to all classes of antibiotics. However, only a subset of AR genes confers resistance to clinically relevant antibiotics, and, although these AR gene profiles are well-characterized for common pathogens, less is known about their taxonomic associations and transfer potential within diverse members of the gut microbiota. We examined a collection of 14,850 human metagenomes and 1666 environmental metagenomes from 33 countries, in addition to nearly 600,000 isolate genomes, to gain insight into the global prevalence and taxonomic range of clinically relevant AR genes. We find that several of the most concerning AR genes, such as those encoding the cephalosporinase CTX-M and carbapenemases KPC, IMP, NDM, and VIM, remain taxonomically restricted to Proteobacteria. Even cfiA, the most common carbapenemase gene within the human gut microbiome, remains tightly restricted to Bacteroides, despite being found on a mobilizable plasmid. We confirmed these findings in gut microbiome samples from India, Honduras, Pakistan, and Vietnam, using a high-sensitivity single-cell fusion PCR approach. Focusing on a set of genes encoding carbapenemases and cephalosporinases, thus far restricted to Bacteroides species, we find that few mutations are required for efficacy in a different phylum, raising the question of why these genes have not spread more widely. Overall, these data suggest that globally prevalent, clinically relevant AR genes have not yet established themselves across diverse commensal gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/genética , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Genes Bacterianos/genética
16.
Front Microbiol ; 14: 1199640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389338

RESUMO

Human microbiome engineering is increasingly proposed as a way to modulate health outcomes. However, one of the current limitations to engineering microbial communities in situ is delivery of a genetic payload for introducing or modifying genes. Indeed, there is a need to identify novel broad-host delivery vectors for microbiome engineering. Therefore, in this study, we characterized conjugative plasmids from a publicly available dataset of antibiotic-resistant isolate genomes in order to identify potential broad-host vectors for further applications. From the 199 closed genomes available in the CDC & FDA AR Isolate Bank, we identified 439 plasmids, of which 126 were predicted to be mobilizable and 206 conjugative. Various characteristics of the conjugative plasmids, such as size, replication origin, conjugation machinery, host defense mechanisms, and plasmid stability proteins, were analyzed to determine these plasmids' potential host-range. Following this analysis, we clustered plasmid sequences and chose 22 unique, broad-host range plasmids that would be suitable for use as delivery vectors. This novel set of plasmids will provide a valuable resource for engineering microbial communities.

17.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333098

RESUMO

The frequent exchange of mobile genetic elements (MGEs) between bacteria accelerates the spread of functional traits, including antimicrobial resistance, within the human microbiome. Yet, progress in understanding these intricate processes has been hindered by the lack of tools to map the spatial spread of MGEs in complex microbial communities, and to associate MGEs to their bacterial hosts. To overcome this challenge, we present an imaging approach that pairs single molecule DNA Fluorescence In Situ Hybridization (FISH) with multiplexed ribosomal RNA FISH, thereby enabling the simultaneous visualization of both MGEs and host bacterial taxa. We used this methodology to spatially map bacteriophage and antimicrobial resistance (AMR) plasmids in human oral biofilms, and we studied the heterogeneity in their spatial distributions and demonstrated the ability to identify their host taxa. Our data revealed distinct clusters of both AMR plasmids and prophage, coinciding with densely packed regions of host bacteria in the biofilm. These results suggest the existence of specialized niches that maintain MGEs within the community, possibly acting as local hotspots for horizontal gene transfer. The methods introduced here can help advance the study of MGE ecology and address pressing questions regarding antimicrobial resistance and phage therapy.

18.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066368

RESUMO

Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.

19.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993251

RESUMO

Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. We found that unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites. This proto-paused-like state transitioned to a longer, focused pause in derived metazoans which coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF reverts the mammalian focal pause to a proto-pause-like state and compromises transcriptional activation for a set of heat shock genes. Collectively, this work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.

20.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853799

RESUMO

Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Humanos , Clostridium perfringens/genética , Esclerose Múltipla/genética , Privilégio Imunológico , Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...