Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Poult Sci ; 103(12): 104264, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39305617

RESUMO

Pekin duck (Anas platyrhynchos domesticus) is the most widely consumed duck protein with nearly 35 million animals produced annually in the United States and exported worldwide. Pekin ducks are primarily utilized in meat production, so very little information is available about their heritability estimates and genetic correlations for traits related to egg quality. Genetically improving duck populations together with the implementation of more efficient nutritional and management strategies is paramount for the long-term sustainability of the US duck industry. There is a potential opportunity to increase meat duck productivity by improving hatching egg quality. The main objectives of this study were to estimate heritability and genetic correlations for various egg quality traits in a commercial population of Pekin ducks. Egg quality traits for 612 Pekin duck females were measured through 3 time points over 2 generations (GEN) [30, 32, and 35 wk of age (WOA)]. GEN 2 had an additional sampling occurring at 40 WOA. Genetic correlations and heritability estimates were calculated for all the traits using the BLUPF90 software, the Restricted Maximum Likelihood (REML) method, and a pedigree containing 9,418 individuals. All egg quality traits evaluated are moderately to highly heritable ranging from 0.20 for Haugh Unit (HU) and Vitelline Membrane Strength (VMS) to 0.71 for shell ratio (SR). Heritability estimates were calculated for each age of collection and in general heritability increased up to 35 WOA. Genetic correlations between egg quality traits showed a wide range of positive and negative relationships with correlation strengths ranging of -0.80 [yolk ratio (YR) and albumin ratio (AR)] to 0.99 [egg volume (EV) and egg weight (EW)]. The results of this study highlight the potential to improve hatching egg quality within Pekin ducks using a multi-trait selection scheme through direct genetic selection.

3.
Animals (Basel) ; 14(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39272257

RESUMO

The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.

4.
J Dairy Sci ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218064

RESUMO

Traits related to calving have a significant impact on animal welfare and farm profitability in dairy production systems. Identifying genomic regions associated with calving traits could contribute to refining dairy cattle breeding programs and management practices in the dairy industry. Therefore, the primary objectives of this study were to estimate genetic parameters and perform genome-wide association studies (GWAS) and functional enrichment analyses for stillbirth, gestation length, calf size, and calving ease traits in North American Jersey cattle. A total of 40,503 animals with phenotypic records and 5,398 animals genotyped for 45,101 single nucleotide polymorphisms (SNPs) were included in the analyses. Genetic parameters were estimated based on animal models and Bayesian methods. The effects of SNPs were estimated using the Single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) method. The heritability (standard error) estimates ranged from 0.01 (0.01) for stillbirths (SB) in heifers to 0.11 (0.01) for gestation length (GL) in cows. The genetic correlations ranged from -0.58 (0.11) between calving ease (CE) and SB in heifers to 0.44 (0.14) between calving ease and calf size (CZ) in cows. CE showed the highest genetic correlation between heifers and cows, 0.8 (0.22) respectively. The candidate genes identified, including MTHFR, SERPINA5, IGFBP3, and ZRANB1, are involved in key biological processes and metabolic pathways related to the studied traits. Reducing environmental variation and identifying novel indicators of reproduction traits in the Jersey breed are needed given the low heritability estimates for most traits evaluated in this study. In conclusion, this study provides a characterization of the genetic background of calving-related traits in Jersey cattle. The estimates obtained can be used to improve or build selection indexes in Jersey cattle breeding programs in North America.

5.
Front Genet ; 15: 1436990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161421

RESUMO

Knowledge of past and present genetic diversity within a breed is critical for the design and optimization of breeding programs as well as the development of strategies for the conservation of genetic resources. The Polypay sheep breed was developed at the U.S. Sheep Experiment Station (USSES) in 1968 with the goal of improving productivity in Western U.S. range flocks. It has since flourished in the more intensively managed production systems throughout the U.S. The genetic diversity of the breed has yet to be documented. Therefore, the primary objective of this study was to perform a comprehensive evaluation of the genetic diversity and population structure of U.S. Polypay sheep using both pedigree- and genomic-based methods. Pedigree data from 193 Polypay flocks participating in the National Sheep Improvement Program (NSIP) were combined with pedigree records from USSES (n = 162,997), tracing back to the breed's origin. A subset of these pedigreed sheep from 32 flocks born from 2011 to 2023 were genotyped with the GGP Ovine 50K BeadChip containing 51,867 single nucleotide polymorphisms (SNPs). Four subgroups were used for the pedigree-based analyses: 1) the current generation of animals born in 2020-2022 (n = 20,701), 2) the current generation with a minimum of four generations of known ancestors (n = 12,685), 3) only genotyped animals (n = 1,856), and 4) the sires of the current generation (n = 509). Pedigree-based inbreeding for the full population was 2.2%, with a rate of inbreeding of 0.22% per generation. Pedigree-based inbreeding, Wright's inbreeding, and genomic inbreeding based on runs of homozygosity were 2.9%, 1.3%, and 5.1%, respectively, for the genotyped population. The effective population size ranged from 41 to 249 for the pedigree-based methods and 118 for the genomic-based estimate. Expected and observed heterozygosity levels were 0.409 and 0.403, respectively. Population substructure was evident based on the fixation index (FST), principal component analysis, and model-based population structure. These analyses provided evidence of differentiation from the foundation flock (USSES). Overall, the Polypay breed exhibited substantial genetic diversity and the presence of a population substructure that provides a basis for the implementation of genomic selection in the breed.

6.
J Dairy Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216520

RESUMO

The implementation of automated milk feeders (AMF) on precision dairy farms has enabled efficient management of large numbers of group-housed replacement calves with reduced labor requirements and improved calf welfare. In this study, we investigated the feasibility of deriving calf resilience indicators based on variability in milk consumption using data from 10,076 North American Holstein calves collected between 2015 and 2021. We modeled and evaluated deviations in observed and predicted daily milk consumption trajectories as indicators of resilience to environmental perturbations. We also analyzed average milk intake and the number of treatments for bovine respiratory disease (BRD) and their genetic correlations with the derived resilience parameters. Milk consumption was recorded using the Förster-Technik AMF. Deviations in cumulative milk intake were modeled using various methods, including quantile regression and the Gompertz function. Ten resilience indicators were derived to quantify the degree and duration of perturbations, including amplitude, perturbation time, recovery time, and deviation velocities. After data editing, genomic data from 9,273 calves and pedigree information from 10,076 calves with 321,388 phenotypic records were used to estimate genetic parameters for 12 traits, including 10 calf resilience indicators as well as average milk intake and treatments for bovine respiratory disease. Substantial phenotypic variability was observed for all calf resilience indicators derived and genetic parameters related to these novel resilience indicators were estimated. The heritability estimates for the resilience traits are as follows: amplitude of the deviation (in L) 0.047 (0.032, 0.064) (HPD interval), perturbation time of deviation (in d) 0.011 (0.0056, 0.016), recovery time of the deviation (in d) 0.025 (0.016, 0.035), maximum velocity of perturbation (L/d) 0.039 (0.024, 0.053), average velocity of perturbation (L/d) 0.038 (0.022, 0.050), area between the curves (L x d) 0.039 (0.027, 0.054), recovery ratio 0.053 (0.036, 0.072), deviation variance 0.049 (0.32, 0.068), log-deviation variance 0.027 (0.016, 0.044), deviation auto-correlation 0.010 (0.0042, 0.017) and number of deviation occurrences 0.023 (0.0094, 0.036). Some of the highlighted genetic correlations observed with average milk consumption include amplitude: 0.569 (0.474, 0.666), perturbation time: -0.534 (-0.73, -0.342), and average velocity: 0.554 (0.432, 0.672). Similarly, the genetic correlations between the number of times treated for BRD with perturbation time was 0.494 (0.251, 0.723), -0.294 (-0.52, -0.095) with number of deviations, and 0.348 (0.131, 0.578) with deviation autocorrelation. This study highlights the genetic influence on various resilience traits in calves, including amplitude, perturbation time, recovery time, and velocity measures of the perturbation. Our findings suggest the need for prioritizing genetic selection based on traits like recovery time, which exhibits higher heritability and a moderate genetic correlation with the number of times a calf is treated for BRD. The combination of AMF data, mathematical modeling, and genomic evaluation provides a comprehensive framework for assessing and breeding more resilient dairy calves in the face of environmental and health challenges.

7.
BMC Genomics ; 25(1): 726, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060982

RESUMO

BACKGROUND: A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. RESULTS: The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima's D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. CONCLUSIONS: The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.


Assuntos
Heterozigoto , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Bovinos/genética , Sequenciamento Completo do Genoma/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Genoma , Genômica/métodos
8.
BMC Genomics ; 25(1): 738, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080557

RESUMO

BACKGROUND: The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS: The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS: Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.


Assuntos
Fertilidade , Endogamia , Linhagem , Animais , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Fertilidade/genética , Genômica/métodos , Feminino , Masculino , Fenótipo , Característica Quantitativa Herdável , Peso Corporal/genética
9.
Genet Sel Evol ; 56(1): 44, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858613

RESUMO

BACKGROUND: Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS: The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS: Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.


Assuntos
Resposta ao Choque Térmico , Lactação , Animais , Feminino , Lactação/genética , Suínos/genética , Suínos/fisiologia , Resposta ao Choque Térmico/genética , Vagina , Temperatura Corporal , Clima , Cruzamento/métodos , Característica Quantitativa Herdável
10.
Front Genet ; 15: 1377130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694873

RESUMO

Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.

11.
J Anim Breed Genet ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807564

RESUMO

Temperament (docility) is a key breeding goal in the cattle industry due to its direct relationship with animal welfare, cattle handler's safety and animal productivity. Over the past six decades, numerous studies have reported heritability estimates for temperament-related traits in cattle populations ranging from low to high values. Therefore, the primary objective of this study was to perform a comprehensive systematic review with meta-analysis to obtain weighted estimates of heritability for temperament-related traits in worldwide cattle populations. After data editing and quality control, 106 studies were included in the systematic review, of which 29.2% and 70.8% reported estimates of heritability for temperament-related traits in dairy and beef cattle populations, respectively. Meta-analyses were performed for 95 heritability estimates using a random model approach. The weighted heritability estimates were as follow: (a) flight score at weaning = 0.23 (95% CI: 0.15-0.32); (b) flight speed at weaning = 0.30 (95% CI: 0.26-0.33); (c) joint analysis of flight speed and flight score at weaning = 0.27 (95% CI: 0.22-0.31); (d) flight speed at yearling = 0.26 (95% CI: 0.21-0.30); (e) joint analysis of flight speed at weaning and yearling = 0.27 (95% CI: 0.24-0.30); (f) movement score = 0.12 (95% CI: 0.08-0.15); (g) crush score at weaning = 0.21 (95% CI: 0.17-0.25); (h) pen score at weaning = 0.27 (95% CI: 0.19-0.34); (i) pen score at yearling = 0.20 (95% CI: 0.17-0.23); (j) joint analysis of pen score at weaning and yearling = 0.22 (95% CI: 0.18-0.26); (k) cow's aggressiveness at calving = 0.10 (95% CI: 0.01-0.19); (l) general temperament = 0.13 (95% CI: 0.06-0.19); (m) milking temperament = 0.16 (95% CI: 0.11-0.21); and (n) joint analysis of general and milking temperament = 0.14 (95% CI: 0.11-0.18). The heterogeneity index ranged from 0% to 77%, and the Q-test was significant (p < 0.05) for four single-trait meta-analyses. In conclusion, temperament is moderately heritable in beef cattle populations, and flight speed at weaning had the highest weighted heritability estimate. Moreover, between-study heterogeneity was low or moderate in beef cattle traits, suggesting reasonable standardization across studies. On the other hand, low-weighted heritability and high between-study heterogeneity were estimated for temperament-related traits in dairy cattle, suggesting that more studies are needed to better understand the genetic inheritance of temperament in dairy cattle populations.

12.
BMC Genomics ; 25(1): 467, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741036

RESUMO

BACKGROUND: Heat stress (HS) poses significant threats to the sustainability of livestock production. Genetically improving heat tolerance could enhance animal welfare and minimize production losses during HS events. Measuring phenotypic indicators of HS response and understanding their genetic background are crucial steps to optimize breeding schemes for improved climatic resilience. The identification of genomic regions and candidate genes influencing the traits of interest, including variants with pleiotropic effects, enables the refinement of genotyping panels used to perform genomic prediction of breeding values and contributes to unraveling the biological mechanisms influencing heat stress response. Therefore, the main objectives of this study were to identify genomic regions, candidate genes, and potential pleiotropic variants significantly associated with indicators of HS response in lactating sows using imputed whole-genome sequence (WGS) data. Phenotypic records for 18 traits and genomic information from 1,645 lactating sows were available for the study. The genotypes from the PorcineSNP50K panel containing 50,703 single nucleotide polymorphisms (SNPs) were imputed to WGS and after quality control, 1,622 animals and 7,065,922 SNPs were included in the analyses. RESULTS: A total of 1,388 unique SNPs located on sixteen chromosomes were found to be associated with 11 traits. Twenty gene ontology terms and 11 biological pathways were shown to be associated with variability in ear skin temperature, shoulder skin temperature, rump skin temperature, tail skin temperature, respiration rate, panting score, vaginal temperature automatically measured every 10 min, vaginal temperature measured at 0800 h, hair density score, body condition score, and ear area. Seven, five, six, two, seven, 15, and 14 genes with potential pleiotropic effects were identified for indicators of skin temperature, vaginal temperature, animal temperature, respiration rate, thermoregulatory traits, anatomical traits, and all traits, respectively. CONCLUSIONS: Physiological and anatomical indicators of HS response in lactating sows are heritable but highly polygenic. The candidate genes found are associated with important gene ontology terms and biological pathways related to heat shock protein activities, immune response, and cellular oxidative stress. Many of the candidate genes with pleiotropic effects are involved in catalytic activities to reduce cell damage from oxidative stress and cellular mechanisms related to immune response.


Assuntos
Resposta ao Choque Térmico , Lactação , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Resposta ao Choque Térmico/genética , Lactação/genética , Suínos/genética , Fenótipo , Locos de Características Quantitativas , Genótipo , Genômica
13.
Poult Sci ; 103(7): 103779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788487

RESUMO

This study aimed to explore the genetic basis of walking ability and potentially related performance traits in turkey purebred populations. Phenotypic, pedigree, and genomic datasets from 2 turkey lines hatched between 2010 and 2023 were included in the study. Walking ability data, defined based on a scoring system ranging from 1 (worst) to 6 (best), were collected on 192,019 animals of a female line and 235,461 animals of a male line. Genomic information was obtained for 46,427 turkeys (22,302 from a female line and 24,125 from a male line) using a 65K single nucleotide polymorphism (SNP) panel. Variance components and heritability for walking ability were estimated. Furthermore, genetic and phenotypic correlations among walking ability, mortality and disorders, and performance traits were calculated. A genome-wide association study (GWAS) was also conducted to identify SNPs associated with walking ability. Walking ability is moderately heritable (0.23 ± 0.01) in both turkey lines. The genetic correlations between walking ability and the other evaluated traits ranged from -0.02 to -0.78, with leg defects exhibiting the strongest negative correlation with walking ability. In the female line, 31 SNPs were associated with walking ability and overlapped with 116 genes. These positional genes are linked to 6 gene ontology (GO) terms. Notably, genes such as CSRP2, DDX1, RHBDL1, SEZ6L, and CTSK are involved in growth, development, locomotion, and bone disorders. GO terms, including fibronectin binding (GO:0001968), peptide cross-linking (GO:0018149), and catabolic process (GO:0009057), are directly linked with mobility. In the male line, 66 markers associated with walking ability were identified and overlapped with 281 genes. These genes are linked to 12 GO terms. Genes such as RB1CC1, TNNI1, MSTN, FN1, SIK3, PADI2, ERBB4, B3GNT2, and BACE1 are associated with cell growth, myostatin development, and disorders. GO terms in the male line are predominantly related to lipid metabolism. In conclusion, walking ability is moderately heritable in both populations. Furthermore, walking ability can be enhanced through targeted genetic selection, emphasizing its relevance to both animal welfare and productivity.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Perus , Animais , Perus/genética , Perus/fisiologia , Perus/crescimento & desenvolvimento , Feminino , Masculino , Estudo de Associação Genômica Ampla/veterinária , Caminhada , Fenótipo
14.
J Dairy Sci ; 107(9): 7038-7051, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762108

RESUMO

Udder conformation is directly related to milk yield, cow health, workability, and welfare. Automatic milking systems (AMS, also known as milking robots) have become popular worldwide, and the number of dairy farms adopting these systems has increased considerably over the past years. In each milking visit, AMS record the location of the 4 teats as Cartesian coordinates in an xyz plan, which can then be used to derive udder conformation traits. Because AMS generate a large amount of data for individual cows per milking visit, they can contribute to an accurate assessment of important traits such as udder conformation without the addition of human classifier errors (in subjective scoring systems). Therefore, the primary objectives of this study were to estimate genomic-based genetic parameters for udder conformation traits derived from AMS records in North American Holstein cattle and to assess the genetic correlation between the derived traits for evaluating the feasibility of multitrait genomic selection for breeding cows that are more suitable for milking in AMS. The Cartesian teat coordinates measured during each milking visit were collected by 36 milking robots in 4,480 Holstein cows from 2017 to 2021, resulting in 5,317,488 records. A total of 4,118 of these Holstein cows were also genotyped for 57,600 SNPs. Five udder conformation traits were derived: udder balance (UB, mm), udder depth (UD, mm), front teat distance (FTD, mm), rear teat distance (RTD, mm), and distance front-rear (DFR, mm). In addition, 2 traits directly related to cow productivity in the system were added to the study: daily milk yield (DY) and milk electroconductivity (EC; as an indicator of mastitis). Variance components and genetic parameters for UB, UD, FTD, RTD, DFR, DY, and EC were estimated based on repeatability animal models. The estimates of heritability (± SE) for UB, UD, FTD, RTD, DFR, DY, and EC were 0.41 ± 0.02, 0.79 ± 0.01, 0.53 ± 0.02, 0.40 ± 0.02, 0.65 ± 0.02, 0.20 ± 0.02, and 0.46 ± 0.02, respectively. The repeatability estimates (± SE) for UB, UD, FTD, RTD, and DFR were 0.82 ± 0.01, 0.93 ± 0.01, 0.87 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. The strongest genetic correlations were observed between FTD and RTD (0.54 ± 0.03), UD and DFR (-0.47 ± 0.03), DFR and FTD (0.32 ± 0.03), and UD and FTD (-0.31 ± 0.03). These results suggest that udder conformation traits derived from Cartesian coordinates from AMS are moderately to highly heritable. Furthermore, the moderate genetic correlations between these traits should be considered when developing selection subindexes. The most relevant genetic correlations between traits related to cow milk productivity and udder conformation traits were between UD and EC (-0.25 ± 0.03) and between DFR and DY (0.30 ± 0.04), in which both genetic correlations are favorable. These findings will contribute to the design of genomic selection schemes for improving udder conformation in North American Holstein cattle, especially in precision dairy farms.


Assuntos
Indústria de Laticínios , Lactação , Glândulas Mamárias Animais , Leite , Animais , Bovinos/genética , Feminino , Lactação/genética , Glândulas Mamárias Animais/anatomia & histologia , Genótipo , Fenótipo , Cruzamento
15.
JDS Commun ; 5(3): 241-246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646573

RESUMO

Lactation curves, which describe the production pattern of milk-related traits over time, provide insightful information about individual cow health, resilience, and milk production efficiency. Key functional traits can be derived through lactation curve modeling, such as lactation peak and persistency. Furthermore, novel traits such as resilience indicators can be derived based on the variability of the deviations of observed milk yield from the expected lactation curve fitted for each animal. Lactation curve parameters are heritable, indicating that one can modify the average lactation curve of a population through selective breeding. Various statistical methods can be used for modeling longitudinal traits. Among them, the use of random regression models enables a more flexible and robust modeling of lactation curves compared with traditional models used to evaluate accumulated milk 305-d yield, as they enable the estimation of both genetic and environmental effects affecting milk production traits over time. In this symposium review, we discuss the importance of evaluating lactation curves from a longitudinal perspective and various statistical and mathematical models used to analyze longitudinal data. We also highlighted the key factors that influence milk production over time, and the potential applications of longitudinal analyses of lactation curves in improving animal health, resilience, and milk production efficiency. Overall, analyzing the longitudinal nature of milk yield will continue to play a crucial role in improving the production efficiency and sustainability of the dairy industry, and the methods and models developed can be easily translated to other longitudinal traits.

16.
J Dairy Sci ; 107(7): 4772-4792, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428498

RESUMO

Hematological parameters refer to the assessment of changes in the number and distribution of blood cells, including leukocytes (LES), erythrocytes (ERS), and platelets (PLS), which are essential for the early diagnosis of hematological system disorders and other systemic diseases in livestock. In this context, the primary objectives of this study were to investigate the genomic background of 19 hematological parameters in Holstein cattle, focusing on LES, ERS, and PLS blood components. Genetic and phenotypic (co)variances of hematological parameters were calculated based on the average information restricted maximum likelihood method and 1,610 genotyped individuals and 5,499 hematological parameter records from 4,543 cows. Furthermore, we assessed the genetic relationship between these hematological parameters and other economically important traits in dairy cattle breeding programs. We also carried out genome-wide association studies and candidate gene analyses. Blood samples from 21 primiparous cows were used to identify candidate genes further through RNA sequencing (RNA-seq) analyses. Hematological parameters generally exhibited low-to-moderate heritabilities ranging from 0.01 to 0.29, with genetic correlations between them ranging from -0.88 ± 0.09 (between mononuclear cell ratio and lymphocyte cell ratio) to 0.99 ± 0.01 (between white blood cell count and granulocyte cell count). Furthermore, low-to-moderate approximate genetic correlations between hematological parameters with one longevity, 4 fertility, and 5 health traits were observed. One hundred ninety-nine significant SNP located primarily on the Bos taurus autosomes (BTA) BTA4, BTA6, and BTA8 were associated with 16 hematological parameters. Based on the RNA-seq analyses, 6,687 genes were significantly downregulated and 4,119 genes were upregulated when comparing 2 groups of cows with high and low phenotypic values. By integrating genome-wide association studies (GWAS), RNA-seq, and previously published results, the main candidate genes associated with hematological parameters in Holstein cattle were ACRBP, ADAMTS3, CANT1, CCM2L, CNN3, CPLANE1, GPAT3, GRIP2, PLAGL2, RTL6, SOX4, WDFY3, and ZNF614. Hematological parameters are heritable and moderately to highly genetically correlated among themselves. The large number of candidate genes identified based on GWAS and RNA-seq indicate the polygenic nature and complex genetic determinism of hematological parameters in Holstein cattle.


Assuntos
Estudo de Associação Genômica Ampla , Análise de Sequência de RNA , Animais , Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Análise de Sequência de RNA/veterinária , Fenótipo , Patrimônio Genético , Genótipo , Cruzamento , Feminino
17.
J Dairy Sci ; 107(7): 4758-4771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395400

RESUMO

Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.


Assuntos
Genômica , Aprendizado de Máquina , Animais , Bovinos/genética , Feminino , Indústria de Laticínios/métodos , Genótipo , Lactação/genética , Leite , Algoritmos , Fenótipo , Comportamento Animal
18.
J Dairy Sci ; 107(7): 5132-5149, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395401

RESUMO

As the stress-inducible isoform of the heat-shock protein 90 (HSP90), the HSP90AA1 gene encodes HSP90α and plays an important role in heat stress (HS) response. Therefore, this study aimed to investigate the role of the HSP90AA1 gene in cellular responses during HS and to identify functional SNPs associated with thermotolerance in Holstein cattle. For the in vitro validation experiment of acute HS, cells from the Madin-Darby bovine kidney cell line were exposed to 42°C for 1 h, and various parameters were assessed, including cell apoptosis, cell autophagy, and the cellular functions of HSP90α by using its inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Furthermore, the polymorphisms identified in the HSP90AA1 gene and their functions related to HS were validated in vitro. Acute HS exposure induced cell apoptosis, cell autophagy, and upregulated expression of the HSP90AA1 gene. Inhibition of HSP90α by 17-AAG treatment had a significant effect on the expression of the HSP90α protein and increased cell apoptosis. However, autophagy decreased in comparison to the control treatment when cells were exposed to 42°C for 1 h. Five SNPs identified in the HSP90AA1 gene were significantly associated with rectal temperature and respiration score in Holstein cows, in which the rs109256957 SNP is located in the 3' untranslated region (3' UTR). Furthermore, we demonstrated that the 3' UTR of HSP90AA1 is a direct target of bta-miR-1224 by cell transfection with exogenous microRNA (miRNA) mimic and inhibitor. The luciferase assays revealed that the SNP rs109256957 affects the regulation of bta-miR-1224 binding activity and alters the expression of the HSP90AA1 gene. Heat stress-induced HSP90AA1 expression maintains cell survival by inhibiting cell apoptosis and increasing cell autophagy. The rs109256957 located in the 3' UTR region is a functional variation and it affects the HSP90AA1 expression by altering its binding activity with bta-miR-1224, thereby associating with the physiological parameters of Holstein cows.


Assuntos
Bovinos , Proteínas de Choque Térmico HSP90 , Resposta ao Choque Térmico , Animais , Bovinos/genética , Bovinos/fisiologia , Feminino , Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/farmacologia , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
19.
Front Genet ; 15: 1308113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333619

RESUMO

The livestock industry in Türkiye is vital to the country's agricultural sector and economy. In particular, sheep products are an important source of income and livelihood for many Turkish smallholder farmers in semi-arid and highland areas. Türkiye is one of the largest sheep producers in the world and its sheep production system is heavily dependent on indigenous breeds. Given the importance of the sheep industry in Türkiye, a systematic literature review on sheep breeding and genetic improvement in the country is needed for the development and optimization of sheep breeding programs using modern approaches, such as genomic selection. Therefore, we conducted a comprehensive literature review on the current characteristics of sheep populations and farms based on the most up-to-date census data and breeding and genetic studies obtained from scientific articles. The number of sheep has increased in recent years, mainly due to the state's policy of supporting livestock farming and the increase in consumer demand for sheep dairy products with high nutritional and health benefits. Most of the genetic studies on indigenous Turkish sheep have been limited to specific traits and breeds. The use of genomics was found to be incipient, with genomic analysis applied to only two major breeds for heritability or genome-wide association studies. The scope of heritability and genome-wide association studies should be expanded to include traits and breeds that have received little or no attention. It is also worth revisiting genetic diversity studies using genome-wide single nucleotide polymorphism markers. Although there was no report of genomic selection in Turkish sheep to date, genomics could contribute to overcoming the difficulties of implementing traditional pedigree-based breeding programs that require accurate pedigree recording. As indigenous sheep breeds are better adapted to the local environmental conditions, the proper use of breeding strategies will contribute to increased income, food security, and reduced environmental footprint in a sustainable manner.

20.
JDS Commun ; 5(1): 28-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223387

RESUMO

The development of an across-country genomic evaluation scheme is a promising alternative for enlarging reference populations and successfully implementing genomic selection in small ruminant populations. However, the feasibility of such evaluations depends on the genetic similarity among the populations, and therefore, high connectedness and high genetic correlations between the traits recorded in different countries or populations are needed. In this study, we evaluated the feasibility of performing an across-country genomic evaluation for milk production and type traits in Alpine and Saanen goats from Canada, France, Italy, and Switzerland. Variance components and genetic parameters, including genetic correlations between traits recorded in different countries, were calculated using combined phenotypes, genotypes, and pedigree datasets. The (co)variance component analyses were performed within breed, either based only on pedigree information or also incorporating genomic information. Across-country genetic parameters were calculated for 3 representative traits (i.e., milk yield, fat content, and rear udder attachment). The heritability estimates ranged from 0.10 to 0.50, which are consistent with previous estimates reported in the literature. The genetic correlations for rear udder attachment ranged from 0.75 (between France and Italy, for the Alpine breed without genomic information) to 0.95 (between Canada and France, for the Saanen breed with genomic information), whereas for fat content, between France and Italy, they ranged from 0.75 in the Alpine breed without genomic information to 0.78 in the Alpine breed with genomic information. However, genetic correlations for milk yield were only estimable between France and Italy, with a moderate value of 0.45 for the Alpine breed with or without genomic information, and of 0.22 and 0.26 in the Saanen breed with and without genomic information, respectively. These low genetic correlations for milk yield could be due to several factors, including the trait definition in each country and genotype-by-environment interactions (GxE). The high genetic correlations found for fat content and rear udder attachment indicate that these traits might be more standardized across countries and less affected by GxE effects. Thus, an international genomic evaluation for these traits might be feasible. Further studies should be performed to understand the surprisingly lower genetic correlations between milk yield across countries. Furthermore, additional efforts should be made to increase the genetic connection among the Alpine and Saanen goat populations in the 4 countries included in the analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA